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Abstract We present an all-optical recurrent neuron comprising a novel space rotator and a sigmoid 
activation unit and demonstrate experimentally time-series classification. Real-time recognition of both 
RZ and NRZ 3-bit-long bit sequences with 100psec optical pulses is successfully demonstrated, 
revealing an average accuracy of >91%.  

Introduction 
During the last decade neuromorphic photonics 
has gained a lot of attention since they offer 
orders of magnitude higher computational 
speeds compared to their electronic 
counterparts. The superiority of photonic 
technology over electronics refers to the 
deployment of a whole new class of ultra-fast, 
compact and low-energy optical modules 
empowering a rich portfolio of key-building 
blocks to build photonic neurons with 
unmatched performance, energy and footprint 
breakthroughs[1–8].  Several architectures of 
neuromorphic photonic layouts[9–17] have been 
developed, so far, yet mostly for feed-forward[9], 
convolutional[16] and spiking[11] neural networks. 
In stark contrast, Recurrent Neural Networks 
(RNNs) and their variants Long-Short-term-
Memory (LSTM) and Gated Recurrent Unit 
(GRU), which typically form the cornerstone of 
classical Deep Learning (DL)-based time-series 
analysis applications (e.g. speech recognition 
and financial forecasting, are still attempting 
their very first deployment steps towards 
migrating from electronic to photonic hardware 
implementations [6,18–20]. Towards that direction, 
only photonic Reservoir Computing (RC)[12–15] 
based alternatives have been reported and in 
some cases also employed in real AI tasks[14,21], 
still requiring, however, additional complex 
signal post-processing of the outcoming optical 
data for declaring task completion. However, RC 
circuits are well-known to comprise a special 
category of recurrent neurons that is not widely 
adopted by the AI community and can hardly 
migrate to more advanced deployments such as 
LSTM and GRUs[22,23].  

Herein, we experimentally demonstrate for 
the first-time, to the best of our knowledge, a 
Photonic Recurrent Neuron (PRN) that provides 
successful time-series classification at speeds 
up to 10Gb/s, without requiring any post-
processing. The proposed PRN comprises a 

novel space rotator module followed by a neural 
classifier that is formed by a sigmoid activation 
element incorporated into a recurrent feedback 
loop. The space rotator transforms the incoming 
optical time-series vector in order to avoid the 
use of negative weights. Successful time-series 
classification has been experimentally presented 
for a 3-bit data sequence with 100psec-long 
optical pulses and for both a RZ modulation 
scheme at 3.3Gb/s as well as a NRZ format at 
10Gb/s, revealing an average accuracy of 
>91%. 

PRN architecture 
The layout of the proposed PRN is illustrated in 
Fig. 1(a). The PRN comprises a space rotator 
and a recurrent neuron, which in turn includes a 
weighting bank and the optical sigmoid 
activation unit reported in[24] incorporated into a 
recurrent loop. The time-series xt and the 
rotation mask mt are both forwarded as input 
signals into the space rotator unit, providing at 
its output a rotated version 𝑥୲  of the input time-
series xt that equals:  

𝑥௧ = 𝑔(𝑥௧) = 1 −  𝑥௧                                    (1) 

 
Fig. 1. (a) Layout of the proposed PRN, (b) the original 

sample space that supports positive weights and (c) the 

transformed sample space. 

 



with g denoting the transfer function of the 
space rotator. The rotated time-series 𝑥୲  gets 
then weighted by the input weight value win and 
is then multiplexed with the weighted recurrent 
signal wryt-1 that equals zero at t=0, with yt-1 
comprising the recurrent signal and wr its 
weight. The summed output of the weighting 
bank 𝑢୲ = 𝑥୲ 𝑤୧୬ + 𝑦୲ିଵ𝑤୰ is then injected into the 
sigmoid activation unit, where a bias signal b is 
additionally applied so that the output signal of 
the activation unit equals 𝑦୲ = 𝑓(𝑢୲ + 𝑏), with f 
denoting the transfer function of the sigmoid 
activation unit of[24]. This signal is then split into 
2 identical signals with the first copy providing 
the output of the PRN and the second signal 
being injected into a feedback loop so as to get 
weighted by wr and delayed by one-time 
instance t in order to realize yt-1. The weighted 
recurrent signal wryt-1 is then multiplexed with 
the next time instance of the weighted time-
series 𝑤୧୬𝑥୲  prior re-entering the activation unit. 
The output of the proposed PRN is governed by 
the following equation:    

𝑦୲ =  𝑓(𝑥୲ 𝑤୧୬ + 𝑦୲ିଵ𝑤୰ + 𝑏)                            (2) 
Before launching a new time-series into the 
PRN, the memory of the system discards any 
stored instance of the previous time-series by 
means of a reset signal rt.  

The space rotator module is responsible for 
rotating the time-series input vector so as to 
reside on the first quadrant of the corresponding 
coordinate system, where the subsequent 
optically implemented neural classifier can be 
successfully applied for classifying the input 
sequence without using negative weights. Fig. 
1(b) illustrates a 2-D space where the decision 
boundary is implemented by the deployed 
photonic neuron based only on positive weights. 
The decision boundary is described by: 

𝑦௧ିଵ = ൬−
𝑤

𝑤
൰ 𝑥௧ + ൬−

𝑏

𝑤
൰                              (3) 

However, the resulted decision boundary 
denoted as “actual hyperplane” cannot separate 
the data that are depicted as black circles from 
the red stars. To overcome this hurdle, we 
propose the rotation function g(xt) that rotates 
the sample space by transforming the input 

data. The new decision boundary is depicted in 
Fig. 1(c) and separates successfully the red 
stars from black circles. Moreover, the proposed 
method requires no changes to the training 
process. 

All-optical 3-bit time-series classification 
The experimental validation of the all-optical 
time-series classification using the proposed 
photonic neuron has been carried out for three-
symbol binary time sequences, where both the 
input and mask vectors comprise binary digits 
“0” and “1” with a pattern length of three bits. 
The PRN was trained to identify and classify 
three successive ones with a dataset that 
contains all the possible 3-bit sequences. The 
PRN was trained using the back propagation 
through time method[25] employing the squared 
loss function. The Adam algorithm with a 
learning rate of η=0.0001 was used for the 
optimization[26], while the optimization ran for 
10,000 iterations. 

The experimentally implemented setup of 
the PRN is depicted in Fig. 2 and its 
performance was evaluated with every bit being 
represented by a 100-psec long optical pulse, 
both when an RZ as well as when an NRZ 
modulation scheme at 10Gb/s was employed. 
The Signal Generation Unit was responsible for 
generating the required signals that have been 
used for the experimental evaluation, with the 
sequence of 3-bit-long rotation mask mt signals 
being imprinted on λ0 and the sequence of 3-bit-
long input vector xt imprinted on λ2. Moreover, 
an optical clock signal with 100-psec long optical 
pulses was generated at λ1 that was responsible 
for carrying the result of the rotating function 
between the mask and the input time vector, 
while an additional signal carried by λ3 had the 
role of the reset signal. The space rotator was 
realized by means of a Semiconductor Optical 
Amplifier-Mach-Zehnder Interferometer (SOA-
MZI) where the mt and xt optical signals were 
launched as control signals into the respective 
SOAs of the two SOA-MZI branches through 
SOA-MZI ports A and D, respectively. The 
space rotator output was imprinted on λ1 that 
was subsequently launched into the weighting 

Fig. 2. Experimental setup used to validate the classification of 3-bit RZ & NRZ time-series through the proposed PRN as well 

as the functionality of the space rotator. 

  



bank module, after being filtered in an Optical 
band-pass Filter (OF) with a 3dB-bandwidth of 
0.8nm. This signal was then weighted by win in a 
variable optical attenuator prior being 
multiplexed with the optical recurrent signal in 
an optical wavelength multiplexer (MUX). The 
MUX output enters then the all-optical sigmoid 
activation function identical to the one 
demonstrated in[24]. The output of the PRN is 
imprinted on λ6 after being filtered by a 0.8nm 
OF and is split into 2 identical signals, with the 
first one being injected into a photodiode for 
being captured and analyzed in a Keysight 
DSOZ632A RTO with 33 GHz bandwidth and 
80GSa/s sampling rate. The second signal 
constituent was fed into a fiber-based feedback 
loop that comprises a fiber length of 61m and an 
optical delay line (ODL), so as to introduce a 
time delay of D=T×(N×K-1) bits, with T denoting 
the bit period, K the number of bits contained 
within a signal period, and N being an integer. 
The delayed signal was forwarded into the 
weighting bank, effectively forming the yt-1 
recurrent neuron signal that was subsequently 
weighted by wr via a variable optical attenuator 
prior being multiplexed with the respective 
weighted xt signal. Note that the weight values 
according to the training are equal to win=10.7dB 
and wr=5.5dB. 

Real-time time-series classification 
operation has been realized by using 100-psec 
long optical pulses within a bit-period of 
T=300psec for the optical rotation mask mt, 
input time-series xt and input clock signals, are 
shown in Fig. 5(a)-(f). Figure 5(a) illustrates the 
bit time-series xt that contains all the 8 different 
3-bit patterns, while the clock and the rotation 
mask mt signals have a periodic content of 
“1110” and “X1X2X30”, respectively. When a 
mask signal of mt=“000” is used, the output of 

the space rotator is identical to the input signal xt 
of Fig. 5(a), as shown in Fig. 5(b), and the PRN 
has the role of identifying the incoming bit 
sequence of “111”. The corresponding PRN 
output is illustrated in Fig. 5(c), clearly revealing 
that the highest amplitude output pulse emerges 
at the end of the “111” input time vector, so that 
a simple thresholding function (shown by the 
dashed straight line) can validate the successful 
all-optical recognition of “111”. The red line in 
Fig. 5(c) illustrates the respective output of the 
software-implemented PRN at a computer, 
providing almost a perfect match with the 
corresponding experimentally obtained 
waveform. Figures 5(d)-(f) depict respective 
experimental results when the bit pattern “110” 
has to be identified by the PRN within the 
sequence of the input time vector, with the 
rotation mask being equal to mt=“001”. In this 
way, the amplitude pulse across the entire 
output sequence reveals at the end of “110”, as 
illustrated in Fig. 5(f). Successful 3-bit string 
recognition has been also performed when 
using NRZ optical pulses at 10Gb/s. Figures 
5(g)-(i) illustrate the obtained results for the NRZ 
bit sequence classification process when a 
mask of mt=“000” is employed. Again, the last 
pulse of the output signal has the highest 
amplitude verifying the successful classification 
of NRZ pattens as well. The average 3-bit 
classification accuracy in case of 10Gb/s RZ 
optical bit stream was 91.12% when measured 
over a total number of 80000 bits, with a 
standard deviation of only 0.78%. Similar results 
were obtained for 10Gb/s NRZ data, where the 
average accuracy was found to be 90.13% with 
a standard deviation of only 0.68%. The 
operational conditions of the experiment are 
summarized in Fig. 2. 

Conclusion 
This work presents all-optical time-series 
classification using a PRN that requires just a 
simple thresholding function at its output, 
negating the need for off-line signal post-
processing. Successful 3-bit optical time-series 
recognition at 3.3 and 10Gb/s for RZ and NRZ 
formats with an average accuracy of 91.12% 
and 90.13%, respectively, has been 
experimentally demonstrated. The proposed 
layout lays the foreground towards more 
sophisticated photonic RNNs like LSTMs and 
GRUs at much higher operational speeds 
compared to their electronic counterparts. 
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Fig. 3.  (a) Time traces from the experimental evaluation of 

3-bit classification with space rotation mask: (a)-(c) 

mt=“000”and (d)-(f) mt=“001”. (h)-(i) depicts results for  a 

mask of mt=“000” using NRZ data. y-axis: (2.90mV/div), (a)-

(f) x-axis:(980psec/div), (g)-(i) x-axis: (500psec/div).  
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