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Abstract We propose an unsupervised machine learning method based on autoencoders to design the
gain profile of few-mode-fiber Raman amplifiers. We test the method for flat and tilted profiles across the
C+L optical band, using a few-mode fiber supporting 6 LP mode groups.

Introduction

Space-division multiplexing (SDM) has emerged
as the leading technology for future optical
fiber communications, exploiting few-mode fibers
(FMFs) and multi-core fibers (MCFs) to sur-
pass the fundamental limit to the capacity of
single-mode fibers (SMFs) and avoid a ”capac-
ity crunch”[1],[2]. Mode-multiplexed transmissions
using FMFs have experimentally demonstrated
the feasibility of using distributed Raman ampli-
fiers (DRAs) in single- and multi-span links[3],[4].
Methods to flatten the Raman gain using mul-
tiple pumps have been studied extensively for
SMFs, and few works have also been published
regarding FMFs[4],[5]. Recently, a machine learn-
ing (ML) approach has been proposed for SMFs[6]

and FMFs[7], using a dataset of thousands of gain
curves generated with random pump powers and
wavelengths to train a neural networks (NNs) to
learn the relationship between the pump param-
eters and respective gain. We propose a more
robust unsupervised learning scheme based on
autoencoders that embeds a numerical Raman
model in the training process of the NN to design
the gain of multi-pump multi-mode Raman ampli-
fiers, without the need to pre-compute a synthetic
dataset. The trained NN can be used to predict the
correct pump parameters to generate a target gain
profile with low computational complexity. We test
this method on a FMF supporting 6 groups of LP
modes, shaping the gain of 50 wavelengths on the
C+L band using 6 counterpropagating pumps. We
show results regarding flat and tilted gain profiles,
achieving low mode-dependent gain (MDG) and
mode-dependent effective noise figure (NF), with
values lower than 0.6 and 0.05 dB, respectively.
For flat profiles, a flatness value of about 6% of the
total gain is achieved. Finally, the robustness of
the predictions with respect to the variation of the
input signal power are presented, showing negligi-
ble variations when the power of each wavelength
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Fig. 1: A diagram of the proposed ML model.

and spatial channel is below -10 dBm.

Proposed method
In FMF DRAs, the evolution of the signals, pumps
and amplified spontaneous emission (ASE) is gov-
erned by the following nonlinear differential equa-
tions[5],[8]:
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where Pm
i and Nm

i are the signal/pump and ASE
power at the ith frequency and mth mode, with
i = 1, . . . , Ns + Np, m = 1, . . . ,M , and Ns, Np,
M the number of signals, pumps and modes, re-
spectively; ξi is equal to −1 at the frequency of
counterpropagating pumps and +1 otherwise; αi

is the attenuation coefficient at the ith frequency;
gR(νi, νj) is the Raman gain coefficient between
frequencies νi and νj . Finally, Im,n are the overlap
integrals between mode m and n, defined by
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Fig. 2: (a) Predicted gain for the flat case. (b) Predictions for the tilted case. (c) Close-up view of the 11 dB gain profile.

where Fk is the mode intensity profile of the kth
mode. The noise source term ηi,j is defined by
ηi,j = 1 + [exp (h|νi − νj |/(kBT ))− 1]

−1, where
h is the Planck’s constant, kB is the Boltzmann’s
constant, and T is the temperature of the fiber;
Bref is the reference noise bandwidth. For signal
frequencies i = 1, . . . , Ns and mode m we can
define the on-off gain in a fiber of length L as

Gm
i =

Pm
i (L) with pumps on
Pm
i (L) with pumps off

. (4)

Defining R(λk, Pn
k (L)) = Gm

i as the function that
computes the on-off gain from the pump wave-
lengths, λk, and powers Pn

k (L), we can define an
autoencoder-like model whose diagram is reported
in Fig. 1:

λ̃k, P̃
n
k (L) = N (Gm

i ) (5)

G̃m
i = R(λ̃k, P̃n

k (L)), (6)

where N (·) is a NN. This model is then trained to
minimize a cost function C(Gm

i , G̃
m
i ) between its in-

put and output gain profiles, so thatN (·) ≈ R−1(·).
The NN parameters are iteratively adjusted using
backpropagation and gradient-based algorithms
such as Adam, using batches of gain profiles as
input of the NN in each iteration. Once trained,
N (·) can be used to instantly obtain the pump
parameters required for a given gain. For the prac-
tical case of flat and tilted curves, we can directly
use ideal profiles with average gain level g and
tilt t sampled from a training region of interest
T = [gmin, gmax]× [tmin, tmax], removing the need
to generate a representative dataset. For the case
of counterpropagating pumps, the training process
is sped up considerably by using the NN to pre-
dict the pump powers at z = 0, and obtain the
corresponding gain and pump powers at z = L by
solving an initial value problem (IVP). This requires
a single numerical integration of Eq. (1), avoiding
the complex shooting algorithms that are typically

Tab. 1: Values of Im,n as defined in Eq. (3) (units of 109 m−2).

Im,n LP01 LP11 LP21 LP02 LP31 LP12

LP01 4.42 2.97 2.14 3.56 1.58 2.84

LP11 2.97 4.76 2.87 1.83 2.44 2.84

LP21 2.14 2.87 4.48 1.69 2.8 1.43

LP02 3.56 1.83 1.69 5.12 1.73 2.48

LP31 1.58 2.44 2.8 1.73 4.25 1.3

LP12 2.84 2.84 1.43 2.48 1.3 4.2

used in counterpumping schemes[9]. This advan-
tage comes at the cost of solving an IVP also in the
prediction phase, when we interrogate the trained
NN for a target gain. However, this approach is
still significantly faster than using classical gain
flattening methods.

Results
The considered fiber is a L = 70 km long step-
index fiber supporting 6 groups of LP modes,
and whose computed overlap integrals are re-
ported in Tab. 1. The fiber attenuation coeffi-
cient as a function of the wavelength is computed
as α(λ) = α0 + α1λ + α2λ

2, with α0 = 5.788

dB km−1, α1 = −7.1246×10−3 dB km−1 nm−1, α2 =

2.268× 10−6 dB km−1 nm−2. A standard Raman re-
sponse function is used[10], with a peak Raman
gain coefficient gR = 7× 10−14 W−1 m. The NN is
a feed-forward NN with 5 fully-connected layers of
1000 hidden neurons each, rectified linear unit acti-
vations, and a sigmoid function σ(x) = 1/(1+ e−x)

applied to the output. The NN is trained using
the root-mean-square error cost function and the
Adam algorithm. The input signals consist in 50
wavelengths on the C+L band, with an input power
of -20 dBm per channel; 6 counterpropagating
pumps are used. The training algorithm is run
for 1000 iterations, using batches of 1024 curves
with average gain and tilt uniformly sampled from
the intervals from 5 to 15 dB, and from -0.015 to
0.015 dB/nm, respectively. In Fig. 2 (a) and (b) we
show the excellent results in terms of mean error
and flatness, for the case of flat and tilted gain
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Fig. 3: Mean error (a), flatness (b) and MDG (c) for flat target
gains, varying the signal input power.

profiles, respectively. The target tilt is set to 0.015
dB/nm. In Fig. 2 (c) we report a close-up view of
the predicted gain curve for the target gain level
of 11 dB, showing that the LP11 mode is the most
amplified, followed by the LP02, and then the rest
of the modes with MDG close to zero. Next, we
test the robustness of the predictions by evaluat-
ing flatness, MDG, and mean error with respect to
flat target profiles, varying the input power of the
transmitted signals. Mean error and flatness are
computed as their maximum value among the dif-
ferent modes. The mean error is reported in Fig. 3
(a), showing that increasing the signal power leads
to under-amplification at higher gains. From Fig. 3
(b), similar comments can be made about flatness,
which rises to over 1 dB when using -5 dBm per
channel. For the other cases, the gain flatness is
approximately 6% of the total gain. Varying the
input signal power has no significant effect on the
MDG, which remains equal to about 3.5% of the
target gain level (Fig. 3 (b)). The output ASE spec-
trum is computed solving Eq. (2) with the predicted
pump parameters and used to determine the ef-
fective NF at the ith frequency and mth mode[11]:

NFeff(i,m) =
Pm
i (0)Nm

i (L)

hνiBrefPm
i (L)L(νi)

, (7)

where L(νi) are the total link losses at frequency
νi. In Fig. 4 we report the maximum NFeff among
the modes as a function of the achieved gain, for
each signal wavelength, using a reference noise
bandwidth of 0.5 nm. Recalling the definition of
NFeff

[11], Fig. 4 shows that this DRA always outper-
forms any quantum-limited lumped amplifier. The
NFeff difference among modes is then computed
varying the power of the input signals, using the
pump parameters predicted by the model trained
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Fig. 4: Maximum effective noise figure among modes as a
function of the gain, for every signal wavelength.
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Fig. 5: The mode-dependent effective noise figure as a
function of the Raman gain, for various signal power levels.

with -20 dBm per channel. These results are re-
ported in Fig. 5, showing that for low input signal
power NFeff is mode-equalized, with the total vari-
ation remaining below 0.05 dB for every gain level,
while rising to about 0.1 dB when -5 dBm per chan-
nel are injected in the fiber.

Conclusions
We presented a robust machine learning method
based on autoencoders to design the gain of dis-
tributed Raman amplifiers in few-mode fibers. A
numerical Raman amplification model is embed-
ded in the training of a neural network to learn
the mapping between gain profile and the pump
parameters that generate it, without using a pre-
computed dataset. This approach is tested on
a fiber supporting 6 LP groups, trasmitting 50
wavelength channels on the C+L band and us-
ing 6 counterpropagating pumps: good results
have been obtained both for the flat and tilted gain
case, showing flatness and mode-dependent gain
values of about 6% and 3.5% of the target gain.
The noise figure of the amplifier was evaluated,
revealing a maximum variation among the modes
always lower than 0.05 dB when the input signal
power is lower than -10 dBm.
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