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Abstract We address the different design challenges and applications of machine learning to 
modeling optical amplifiers. The problem of accuracy in designing neural networks cannot be 
simplified to the requirement of large training data sets, but it is specific to the application and the 
model selection.  

Introduction 
Recent years have seen a surge of interest in 
Machine Learning (ML) applied to modelling, 
designing and optimizing optical transmission 
systems and components[1,2]. One application of 
ML is in modelling optical amplifiers[3]–[19], whose 
gain is a nonlinear function of the parameters of 
the fiber providing the gain medium, pump 
current, pump wavelengths, input signal power 
levels and bandwidth. The modeling of amplifier 
physics is paramount in the prediction and 
optimization of the overall system throughput, 
particularly when considering the recent 
applications of per-channel power optimization 
transmitting non-flat spectra[20]–[22], and has 
conventionally relied on the development of 
accurate analytical models of erbium-doped 
fiber amplifiers (EDFAs)[23]  or semi-analytical 
models of distributed Raman amplifiers 
(DRAs)[24], the most commonly used types of 
amplifiers in optical transmission links. Model 
prediction accuracy is important as any errors in 
the model will translate to the practical system 
implementation 

While (semi-)analytical models offer the 
advantage of computational speed, they can be 
challenging to implement. This is especially the 
case when employing DRAs or hybrid 
Raman/EDFA (HRE) type of amplifiers, to 
broaden the transmission bandwidth over the 
C+L bands. With distributed amplification the 
gain estimation requires a semi-numerical 
solution to solving partial differential equations 
that describe the signal and pump powers 
evolution along the transmission fiber medium. 
Moreover, the management of multiple Raman 
pumps adds to the complexity of designing and 
operating DRA and HRE amplifiers towards 
achieving a target gain response.  

Neural networks (NN) can be a more 
practical alternative in simulating the gain 
response of such amplifiers. With knowledge of 
input parameters and the output signal, learning 
directly from amplifier-generated data is possible 
while the model’s implementation complexity is 

simplified. Such models have been applied to 
various types of amplifiers including EDFAs[3]–[8], 
all-Raman[10]–[17] or HREs[9]. However, to achieve 
estimation performances comparable to the 
analytical models, large numbers of data sets 
are often used when training the NNs, 
increasing their time complexity. Hybrid 
models[18],[19], comprising ML and analytical 
techniques, or reduced-complexity parameter-
fitting techniques[25] that avoid NNs, have been 
proposed to improve the estimation time. 

However, in this paper, we address the fact 
that the performance and complexity of the NNs 
strongly depend not only on the chosen NN 
architecture and optimization procedure, but 
also on the amplifier being emulated. Hence, 
this might suggest that there is no ubiquitous NN 
design to model various optical amplifiers. As a 
result, the comparison between the different 
model types (i.e. NN, analytical, or a hybrid of 
the two) is not straightforward and requires a 
preliminary thorough investigation of the optimal 
NN model design. 
 
Machine Learning Amplifier Models 
A commonly addressed problem of ML-assisted 
amplifier models is gain prediction. The initial 
interest was addressing EDFA’s gain prediction 
in elastic optical networks or network topologies 
employing reconfigurable add-drop multiplexers 
(ROADMs), where a cascade of amplifiers with 
varying input conditions can lead to undesirable 
gain fluctuations across different wavelength-
division multiplexed (WDM) channels. 
Configuring constant gain-operation of EDFAs 
through ML can achieve an improved QoT and a 
reduction from 1.02dB to 0.08dB in OSNR  
margin[8]. 

The conventional performance metrics for 
the ML-based amplifier gain estimators is the 
root-mean-squared error (RMSE) or the 
maximum error over the output features (power 
or gain per wavelength) and sample number 
(across all measurements) in the test set. A 
maximum EDFA gain error of 0.11 dB was 



 

 

reported[6] using 5000 experimental 
measurements to train and test a 2-hidden layer 
NN. The network was designed to take as input 
the signal power per channel, total input power 
and target gain.  
In contrast with EDFAs which requires a single 
pump wavelength for its operation, Raman 
amplifiers require multiple pump wavelengths 
(i.e. more than 4 typically) to control and extend 
the bandwidth of operation into the L-band. ML 
can reduce the complexity of predicting the gain 
of all-Raman amplifiers. Similar performances 
have been reported[10],[11] with maximum errors 
of 0.5 dB over 3000 data samples[11] and 0.4 
dB[10] over 5000 data samples. For HREs, 
spectral estimation with maximum errors of 0.33 
dB over C+L band channels covering 90 nm 
was recorded[9]. All these different results[9]-[11]  
were obtained with almost identical NN hidden-
layer designs: 1-2 hidden layers,10-nodes, 
hyperbolic tangent sigmoid activation functions 
and trained using the Levenberg-Marquardt 
optimizer. However, the HRE model reports 
lower overall errors for significantly lower 
number of measurements (only 826 
experimental measurements were required). 
With ML techniques, it is usually expected to 
have a lower estimation error (variance) as the 
training data set size increases, unless the 
estimation bias is high. The explanation for the 
discrepancy could be stemming from the very 
different amplifiers used, number of channels, 
and the ensuing input/output layers 
configurations, leading to different performance 
results. Therefore, for each application and 
amplifier design, performing a ML architecture 
search is necessary in ensuring the highest 
model accuracy.   

When selecting a NN model that could 
replace an analytical or hybrid model, the aim is 
simultaneously achieving reduced-complexity 
and high-accuracy requirements. An optimal NN 
model selection requires trying different 
activation functions (i.e. sine, hyperbolic 
tangent, rectified linear unit etc.), different nodes 
and layers configurations and optimizers (i.e. 
stochastic gradient descent with momentum, 
Adam, Levenberg-Marquardt etc.) to minimize 
the RMSE. 

For DRAs and HREs the inverse problem 
has also been studied[9],[13]-[17], where, the 
required pump powers are determined by a 
neural network to achieve a target spectral 
shape or tilt at the output of the amplifier. This 
inverse mapping approach has applications in 
amplifier design and spectral optimization to 
maximize system throughput. The main 
challenge here is accounting for the nonlinear 

interactions between Raman pumps and signal 
powers, which is numerically expensive in a 
semi-analytical model, but simplified in the ML 
implementation. When configuring a ultra-
wideband  HRE by means of a NN[9], the pump 
powers were estimated with RMSE as low as 
6.9 mW (on average across all experimental 
measurements for which the pumps settings 
were varied between 0-310 mW for the Raman 
pumps and 0-650 mW for the 980 nm pumps). 
The ML design of DRAs including optimal pump 
powers and wavelengths selection to obtain a 
target gain over the C+L bands was shown 
numerically[14] to perform with mean gain errors 
of 0.46 dB and 0.2 dB standard deviation. These 
results demonstrate the applicability of ML to 
solving the inverse mapping problem for C+L 
amplifiers.  

In practice, another strong incentive to using 
ML in the inverse design of optical amplifiers is 
the simplification of the amplifier configuration 
process, both during deployment and operation. 
A real-time configuration process can take 
between an hour and a full day by a field  
engineer, after system deployment. ML-assisted 
configuration could be instantaneous once fully 
trained. While the training process is time 
consuming due to the need to gather data sets, 
these measurements could be integrated as part 
of the amplifier testing phase during 
deployment. Moreover, a practical 
demonstration has shown[9] that less than 1000 
measurements can potentially achieve better 
performance than a lab engineer in performing 
the pump configuration of a HRE. 

 
Conclusions 
Machine Learning offers an alternative to 
analytical models, through neural networks, 
which can improve the estimation accuracy of 
nonlinear functions. The computational 
complexity during training is often regarded as 
the main limitation of these techniques. 
However, the optimization criteria of NNs 
depends on its various application, therefore 
performing a NN architecture search is essential 
in determining the best-fit ML model of an 
optical amplifier and thus take advantage of their 
properties to provide simplified implementation 
and highly accurate predictions.  
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