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Abstract A deep learning-based wavelength controllable forward prediction and inverse design model 
of nanophotonic devices is proposed. Both the target time-domain and wavelength-domain information 
can be utilized simultaneously, which enables multiple functions, including power splitter and 
wavelength demultiplexer, to be implemented efficiently and flexibly. 

Introduction 
Nanophotonic devices designed at a sub-
wavelength scale attract increasing attention 
from various areas of computing, 
communications, and sensors[1]-[3] owing to their 
superior capability in manipulating incident 
electromagnetic waves. Forward response 
prediction of such devices is conventionally 
realized by the model-driven methods, which are 
characterized based on rigid analytical models 
and strongly dependent on the mathematical 
and physical theories, such as the finite element 
method (FEM) and the finite-difference time-
domain method (FDTD)[4]. As the opposite 
process, inverse design is complex and 
nonintuitive due to the large design parameter 
space and the unclear inverse physical process. 
Several systematic design approaches have 
been proposed, including nonlinear search[5] and 
adjoint method[6]. However, these methods 
require massive forward prediction iterations, 
resulting in the high computational cost and 
noticeable performance deterioration with the 
increasing complexity of the device structures. 

Recently, as a strong representation analysis 
method, deep learning (DL) has been applied 
into optics and photonics areas for both forward 
prediction and inverse design[7]-[10]. The implicit 
input-output relationship can be revealed by 
using deep neural networks (NN), so that 
facilitating the prediction and inverse design 
efficiently in a data-driven way. Silicon-based 
integrated nanophotonic devices with an 
artificially designed digital design region 
(DDR)[11] can implement multiple functions, 
including power splitter, wavelength 
demultiplexer, etc. In this field, however, most of 
the applications of DL simply performed a 
mapping between input and output[7], which can 
merely implement either forward prediction or 
inverse design for only one specific function. 
When different design targets are needed, the 

whole process (data collection and NN training) 
and NN structure have to be repeated and 
readjusted. Thus, compared with model-driven 
methods those are based on universal physical 
insights with various parameter controllers, the 
data-driven methods based on DL encounter 
severe challenges in flexibility and scalability. To 
address these problems, the prospective DL-
based methods require more advanced 
parameter controllers to execute scalable 
modeling functions and embody comprehensive 
physical information. 

In this paper, a wavelength controllable data-
driven approach utilizing convolutional neural 
networks (CNN) is proposed to implement both 
forward prediction and inverse design for 
compact DDR-based nanophotonic devices. 
Combined with the DDR feature extractor and 
wavelength controller, the proposed method can 
predict output power flux from arbitrary DDR in 
the selected wavelength range. By incorporating 
the wavelength controller, the characteristics 
from both time-domain and wavelength-domain 
can be taken into account in the inverse design, 
and thus enabling multifunctional design, which 
can greatly shorten the computation time and 
reduce the reliance on expertise. This method 
paves the way for hybrid parameters and data-
driven modeling of nanophotonics and aims to 
promote the feasibility, flexibility, and scalability 
of DL in nanophotonics.  
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Fig. 1: Geometry of the investigated compact silicon-

based nanophotonic device. 



Wavelength controllable data-driven model  
In this study, we investigate a compact silicon-
based nanophotonic device, as depicted in Fig. 
1. A compact footprint of 2×2 m2 DDR is 
integrated with one input and two outputs 0.4 

m wide silicon slab waveguides. Transverse 
electric (TE) mode is used as input with 
wavelength range of 1300~1550 nm at 50 nm 
interval under a fixed power. The refractive 
indexes of silicon and air are set as 3.464 and 1. 
The square DDR is composed of 20×20 pixels, 
and each pixel with an area size of 100×100 
nm2 contains a binary state: "1" for non-etched 
silicon and "0" for etched air. The DDR 
represented by a 20×20 binary pixels image 
(denoted as S) and the corresponding 101 
sample points of output power flux at six 
wavelengths (denoted as T) are collected as 
data set. A total of 8,000 data pairs are 
collected, 80% and 20% of which are used for 
training and testing, respectively. Note that S is 
generated randomly by uniform distribution. 

Considering the complexity of the DDR with 
total 220×20 cases, the CNN as a powerful image 
information analysis technique is adopted to 
deal with this problem. The structure of the 
proposed model is composed of Response 
Predictor (RP) and DDR Generator (DG), as 
displayed in Fig. 2. The RP is first trained alone 
and the training of DG needs the assistance of 
the trained RP. Further, the DDR Feature 
Extractor combined with the wavelength 
controller make up the RP, as depicted in Fig.2 
(a). The Extractor utilized CNN to compress and 
extract the information of DDR as a 

dimensionality reduction process. The 
wavelength information is entered through the 
wavelength controller and further processed 
along with the extracted information to predict 
the responses at the corresponding 
wavelengths. We use S and corresponding 
wavelengths as input and T as labels in the 
training data set to train the RP. Note that the 
responses T of six wavelengths ranging from 
1300 to 1550nm are trained for every S. The RP 
losses of the training and testing data are 
around 0.04 and 0.092 at the end of training 
after 100 epochs. 

Both the RP and FEM tools are employed to 
predict the corresponding responses at six 
wavelengths from DDR in test data. The 
average mean squared error (MSE) between RP 
and FEM from 1300 to 1550 nm is measured 
and shown in Fig. 3. For the purpose of 
visualization,  the responses of the testing data 
at wavelengths of 1300/1325/1400/1500 nm are 
also displayed. It can be seen that although the 
responses vary significantly with different 
wavelengths, the responses predicted by RP 
coincide well with FEM results. In particular, the 
cases of wavelengths at 
1325/1375/1425/1475/1525 nm have never 
appeared in the training process, but only slight 
mismatches occur at these untrained 
wavelengths, which means the wavelength 
controller performs good generalization ability 
from this training method and is similar to the 
role played by the wavelength parameter in the 
physical model-driven method. Therefore, the 
proposed RP is anticipated to be a 

 
Fig. 2: (a) Response Predictor denoted as RP, composed of DDR Feature Extractor and wavelength controller, used to 

predict responses T at selected wavelengths from DDR S. (b)DDR Generator denoted as DG, used for retrieving DDR S* 
satisfying the target responses T/T* at specific wavelengths. (c)Three training processes of the proposed model. 



supplementary and potential simulation tool in a 
data-driven manner. 

Inversely, the DG is a transposed CNN to 
retrieve the design topology S* for the target 
responses T with wavelengths. At training stage, 
the DG is cascaded in front of the trained RP. 
As indicated in Fig. 2(c)(ii), the input of DG are T 
and corresponding wavelengths in the training 
set. The output S  of DG are fed into the trained 
RP, and the same T act as labels at the output 
of RP. During this process, the parameters of 
RP are fixed when DG’s updating. Based on this 
tandem structure, the contradiction that similar 
responses can be generated from totally 
different DDR can be resolved[12]. Once training 
is finished, DG is capable of retrieving DDR 
satisfying the target responses at specific 
wavelengths. The output S  of DG is binarized to 
be 0 or 1 in the end. When training DG, the test 
loss is around 0.14 after 100 epochs. In the 
whole training, the batch size is 20, the learning 
rate is 0.002, MSE loss function and Adam 
optimizer are used. 

To demonstrate the feasibility of the DG, we 
select target responses of actual design region 
in the testing set as well as manually specific 
twin peaks curves as the input of DG. The target 
responses and their corresponding DDR 
generated by DG are shown in Fig. 4. With 
average MSE < 0.4, the FEM results of 
generated DDR are retrieved with high fidelity. 
In Fig 4, such twin peaks with output flux 
splitting ratios of 0.998 (in red line) and 0.523 (in 
green line) can implement 1:1 and 1:2 power 
splitters at desired wavelength range 
respectively, and other arbitrary power ratios 
can also be realized. 

As long as the DG is trained, we can inverse 
design some functions considering both time 
and wavelength domain through it. Multiple 
target responses T* at different wavelengths can 
be used to fine-train the trained DG 

simultaneously as depicted in Fig.2 (c)(iii), and 
the DG can retrieve S* satisfying T* on the basis 
that the trained DG already contains inverse 
design information, which can not be done from 
scratch. Additionally, three target specific curves 
including single peak at corresponding port at 
1310/1550 nm and zero at 1400 nm are input 
and the DG outputs a DDR functioned as a 
1310/1550 nm wavelength demultiplexer 
satisfying target curves simply after 5 epochs 
within one minute, as shown in Fig. 5. 
Meanwhile, the amplitude of the target curves 
can be changed to obtain different efficiency 
results with a maximum around 90%.  

Conclusions 
In this paper, we proposed a DL-based 

wavelength controllable response prediction and 
inverse design model by incorporating the 
wavelength controller. Both the target time and 
wavelength information can be utilized 
simultaneously. The multiple functions of power 
splitters with arbitrary splitting ratio and 
wavelength demultiplexers at different 
wavelengths were implemented in a compact 
footprint (2 2 m2). This study aims to improve 
the flexibility and controllability of DL-based 
method in photonics research.  
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Fig. 3: (BottomXLeftY) Responses predicted by FEM and 

RP of a tested DDR data at 1300/1325/1400/1500 nm 
wavelength. (TopXRightY) Average testing data MSE 

with wavelengths from 1300 to 1550 nm at 25nm interval.
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Fig. 4: FEM predicts of retrieved DDR by DG (RightTop: 

red line, RightBottom: green line) with target test and 
manually specific curves. 
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Fig. 5: FEM predicts of retrieved DDR by DG satisfying 

three target responses at different wavelengths and 
corresponding electromagnetic energy density at 

1310/1550 nm. 
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