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Abstract In this talk, we discuss our recent progress in the context of integrated photonic systems that 

exploit temporal modulations, opto-mechanical phenomena and nonlinearities to enable nonreciprocity 

without the need for a magnetic bias, and their implications for robust topological propagation of light on 

chip. 

Introduction 

Nonreciprocal responses are usually achieved in 

optics using magneto-optical phenomena and 

materials [1]-[2], which are known to break one of 

the assumptions of the Lorentz reciprocity 

theorem. However, this approach has several 

drawbacks, including the scarcity and cost of 

magneto-optical materials, their relatively large 

insertion loss that each of this device introduces 

in the optical path, the weakness of these 

phenomena as the frequency grows, and their 

lack of compatibility with silicon technology and 

hence their challenges in integration.  

Time modulation is an interesting alternative to 

magnetic bias, as it has been recognized by 

many scientists over the years [3]-[10] in different 

frequency regimes and for different applications. 

Metamaterials offer a path to make these 

phenomena more efficient, compact, and 

optimize their metrics of performance, to the point 

of making time modulation an attractive 

alternative to magnetically biased devices [11]. 

We have been working on this topic for a few 

years [12]-[22], proposing various magnet-free 

routes towards non-reciprocal devices for guided 

waves and free-space radiation that can 

outperform magnetic circulators or isolators in 

terms of several metrics of performance. One 

opportunity is offered by electro-optical 

modulation schemes, but they tend to be limited 

in modulation speeds and amplitudes. 

Nonlinearities offer the possibility of modulating 

the underlying materials optically, offering 

exciting directions for magnet-free integrated 

photonic devices breaking reciprocity. In addition, 

nonlinearities combined with geometrical 

asymmetries can provide a bias-free route to 

nonreciprocity, by using the signal itself entering 

the device to break transmission sysmmetry. 

Arrays of these elements open also other 

interesting opportunities in the context of 

topological metamaterials [22]. More generally, 

temporal modulations break the limitations of 

static, passive, linear metamaterials and open 

tremendous opportunities for new frontiers of 

wave manipulation. In this talk, we will focus on 

outlining the significant opportunities and 

challenges in implementing these systems.  

As an example of the complexity of light-matter 

interactions in these systems, it is sufficient to 

point out that, in order to break reciprocity, the 

speed of modulation needs to be typically 

comparable with the time the wave spends inside 

the device, but given the challenges in 

modulating with large speeds, we typically rely on 

highly resonant elements that slow down the 

wave. This implies that conventional time-domain 

techniques to analyze these modulated elements 

may be largely inefficient, and analytical or 

frequency-domain techniques may be preferable. 

During the talk, we will discuss a few approaches 

we have pursued to efficiently analyze these 

structures, and the application of these 

techniques for the design and implementation of 

various nonreciprocal and topological 

metamaterials. 

Parametric Metamaterials 

In addition to non-reciprocity, time modulation 

opens related opportunities for other unusual 

wave interactions. An example is the possibility 

to pump energy in the system by extracting it from 

the modulation network. The most common way 

of achieving this parametric gain phenomenon is 

to modulate at twice the signal frequency, which 

may be used to amplify the signal traveling in the 

modulated system, or broaden its bandwidth of 

operation [23].  

Another opportunity is provided by commutated 

networks, which can convert frequencies with 

large efficiency, a functionality that can be 

exploited to establish new regimes of wave 

propagation and overcome the trade-off between 

delay and bandwidth in delay elements [24]. 

These systems, typically implemented in arrays 

of modulated elements, are difficult to model, 

analyze and synthesize, and efficient numerical 

techniques are extremely important to provide a 

route towards their implementation. During our 
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talk, we will elaborate on our approaches to the 

analysis, design and implementation of these 

systems, and discuss their impact on various 

photonic technologies of interest from radio-

frequencies to optics. 

Conclusions 

Modulated and nonlinear structures are ideally 

suited to open a magnet-free routes to 

nonreciprocal photonics, which is ideally suited 

for optical and quantum computing and lidar 

systems. In this talk, we will discuss the basic 

principles behind this technology, our recent 

implementations, and the potential impact on 

photonic technologies of this work. 
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