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Abstract A heterogeneously integrated III-V-on-silicon nitride mode-locked laser is demonstrated. The
device is fabricated by microtransfer printing an InP/InAlGaAs-based multiple-quantum-well coupon. A
dense comb with a 755 MHz repetition rate, a 1 Hz ASE limited RF linewidth and a 200 kHz optical
linewidth is achieved.

Introduction

Comb sources on a photonic chip have gained
considerable interest in recent years for their po-
tential in various domains, including optical rang-
ing, microwave photonics, spectroscopy, time-
and frequency metrology[1],[2]. While platforms
such as quantum cascade lasers (QCLs), electro-
optic and Kerr combs have shown impressive de-
velopments, their use in a number of applications
remains elusive because of their large line spac-
ing, limited number of usable comb lines and in-
tegration challenges[3]–[6]. In particular the con-
cept of dual-comb spectroscopy in the gas-phase
has proven difficult because of the need for ultra-
dense optical frequency combs[3],[7]. As most
gasses have absorption features with a linewidth
on the order of a GHz, comb sources with a line
spacing <1 GHz are in high demand to accu-
rately sample the spectra without the need for in-
terleaving[3],[8]. Mode-locked laser comb sources
offer an attractive platform for such applications
as they can provide comb spectra with ultra-
narrow line spacing. Moreover, these devices al-
low for high conversion efficiencies and can be
electrically pumped, omitting the need for an ex-
ternal optical pump source[9]. Due to the high
waveguide losses of monolithic III-V, InP, and III-
V-on-Si platforms and the difficulties with het-
erogeneous integration, current state-of-the-art
integrated passively mode-locked lasers fail to
demonstrate comb spectra with sub-GHz repeti-
tion rates[8],[9].
In this work, we leverage the ultra-low losses
of silicon nitride (Si3N4) to build a heteroge-
neously integrated III-V-on-Si3N4 mode-locked
laser (MLL) with a record-low repetition rate of
755 MHz. The technique of microtransfer print-
ing is used to integrate an InP/InAlGaAs based
multiple-quantum-well (MQW) semiconductor op-
tical amplifier (SOA) on an ultra-low-loss sili-

con nitride waveguide platform, hence enabling
wafer scale manufacturing. Excellent noise per-
formance is achieved, such as an ASE limited
RF linewidth of 1 Hz and an optical linewidth of
200 kHz.

Design and fabrication
A schematic of the MLL is depicted in Figure
1(a). An extended ring cavity geometry was
employed, consisting of two 10 cm Si3N4 spirals,
deposited by means of low-pressure chemical
vapor deposition on top of a silicon-on-insulator
(SOI) wafer. The Si3N4 waveguides were defined
using deep-UV lithography and have a width
of 2 µm and a height of 330 nm. To enable
heterogeneous integration, a recess is locally
etched in the 4.2 µm silicon oxide (SiO2) top
cladding. A two-stage taper structure is em-
ployed to bridge the large index difference and
ensure efficient coupling of light from the Si3N4 to
the III-V stack: first from the Si3N4 waveguide to a
silicon waveguide underneath, and subsequently
to the III-V waveguide. A microscope image of
the two-stage taper with transfer printed coupon
is shown in Figure 1(b). The III-V InP/InAlGaAs
layer stack is described in detail in Reference [10].

Heterogeneous integration
For the heterogeneous integration of the III-V am-
plifier in the recess on the passive chip, the mi-
crotransfer printing technique is used[10]–[12]. It is
based on the kinetically controlled adhesion of an
elastomeric stamp to pick pre-processed devices
from their source substrate and print them on a
target photonic integrated circuit. In contrast to
bonding techniques, microtransfer printing allows
to integrate a III/V coupon in a recess. Moreover,
this approach allows massively parallel integra-
tion, enabling wafer-scale manufacturing. After
transfer printing, the coupon is post-processed to
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Fig. 1: (a) Schematic of the extended ring cavity mode-locked laser with Si3N4 spirals and InP/InAlGaAs-based amplifiers with
saturable absorber. The recess for microtransfer printing the III/V coupon is indicated. (b) Microscope image of the transfer
printed coupon on top of the taper structure.

isolate a saturable absorber (SA), vias are etched
to access the n-InP layer and electrical contacts
are added. The SA has a length of approximately
34 µm whereas the amplifiers have a length of
600 µm SOA at each side.

Measurements
The MLL was characterized on a Peltier
temperature-controlled stage, which kept the de-
vice substrate at a constant temperature of 15◦C.
A PGSGP probe was used for biasing, where
the P-contacts were used to power the ampli-
fiers and the S-contact was used to reverse bias
the saturable absorber. Light was extracted with
a single-mode fiber using a Si3N4 grating cou-
pler. Passive mode-locking at the fundamen-
tal frequency was found to occur at an SA re-
verse bias voltage of -2.9 V with a -0.499 mA
SA current, and an amplifier bias of 1.88 V with
a 75 mA injection current. The optical power in
the fiber was measured to be around -24 dBm,
corresponding with an on-chip power of approxi-
mately 126 µW when the grating coupler losses
are taken into account. Although it has been
shown that 10 µW of optical output power suffices
to perform gas-phase dual-comb spectroscopy,
larger output powers could be obtained by using
longer amplifiers. Figure 2(a) shows the electrical
spectrum of the MLL at the aforementioned bias
point, obtained with a Agilent N9010A Electrical

Spectrum Analyzer (ESA) with a 300 kHz reso-
lution bandwidth. A flat, densely-spaced comb
spectrum is achieved with a record-low repeti-
tion rate of 755 MHz. To the best of our knowl-
edge, this it the lowest reported repetition rate
for any integrated passively mode-locked laser,
enabling an unprecedented resolution for chip-
based spectroscopic applications. Note that the
roll-of of the RF comb at high frequencies is a
consequence of the 30 GHz bandwidth limita-
tion of the transimpedance amplifier of the pho-
todetector. Furthermore, the repetition frequency
signal was measured with a 100 Hz RBW, re-
vealing a narrow -10 dB RF linewidth of 100 Hz.
The optical spectrum of the MLL was measured
with an Optical Spectrum Analyzer (OSA) with a
30 pm resolution and is depicted in Figure 2(b). A
10-dB optical bandwidth of 3.27 nm is achieved,
corresponding with over 500 densely and evenly
spaced comb lines. The capacity to produce such
dense combs on-chip with hundreds of lines and
sub-GHz linespacing is unmatched by other comb
generation techniques such as QCLs, electro-
optic combs and Kerr microcombs. Moreover, the
spectrum of a mode-locked laser does not suffer
from a strong central optical pump signal as is of-
ten the case with competing techniques. The op-
tical linewidth was characterized by beating the
MLL output with a Santec tunable laser (60 kHz),
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Fig. 2: (a) RF spectrum of the generated pulse train at the chosen operating point. The RBW is 300 kHz. (b) Optical spectrum
measured with a 30 pm resolution. A 10-dB optical bandwidth of 3.27 nm is measured.

resulting in a heterodyne beatnote with a 200 kHz
optical linewidth. Finally, single-sideband phase-
noise measurements were carried out, showing a
record-low 1 Hz ASE limited RF linewidth.

Conclusions
We have demonstrated a heterogeneously inte-
grated III-V-on silicon nitride mode-locked laser
with a record-low repetition rate of 755 MHz and
unprecedented noise performance such as a fun-
damental RF linewidth of 1 Hz and an optical
linewidth of 200 kHz. The device was fabricated
by microtransfer printing an InP/InAlGaAs-based
multiple-quantum-well coupon on a low-loss sili-
con nitride platform, enabling wafer scale manu-
facturing. Such an electrically pumped low-noise
ultra-dense frequency comb source is highly de-
sirable in a number of applications, for example in
high-resolution spectroscopy.
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