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Abstract We experimentally demonstrate capacity gains of up to 23% under electrical supply power 

constraints in a long-haul optical fiber cable by optimizing the gain shaping filters using neural networks. 

Introduction 

In submarine optical fiber cables that are com-

monly built under a strict electrical supply power 

(ESP) constraint, massive spatial parallelism is a 

key technology to maximize cable capacity[1],[2]. It 

is because the aggregate cable capacity grows 

linearly with the number of spatial paths, and over-

compensates for the logarithmically reduced spec-

tral efficiency of each spatial path. A critical figure 

of merit in such systems is the power efficiency, 

defined as the capacity 𝐶 per Watt of ESP 𝒫𝐸 , 

both per spatial path, i.e., 𝓂 = 𝐶/𝒫𝐸  [1]. In our 

previous work[3], we experimentally demonstrated 

a gain of 19% in 𝓂 on a 744-km optical fiber link 

by removing the gain flattening filters (GFFs) from 

the link, and by optimally allocating the launch 

power across the C-band, whose optimal shape 

was found by neural networks (NNs)[4]. However, 

this approach is not scalable with distance, since 

complete removal of the GFFs causes the erbium-

doped fiber amplifiers (EDFAs) to provide useful 

gains only in a very narrow spectral band at long 

distances. In this paper, therefore, we use gain 

shaping filters (GSFs) instead of GFFs after every 

EDFA, in order to maximize 𝓂 at transoceanic 

distances. We build a simulation tool using NNs, 

which shows much better accuracy than state-of-

the-art physical modeling software[3], to predict the 

output power spectral density (PSD) of a sub-

marine cable that has arbitrarily shaped GSFs. 

Compared to the NNs of [3] that predict the PSD 

at the output of a specific optical link, the NNs in 

this paper are on a per-EDFA basis and can thus 

predict the evolution of the PSD over arbitrary 

links, enabling the optimization of in-line GSFs. 

We demonstrate by experiment that the GSFs 

optimized using the gradient-descent (GD) meth-

od with the NN-based simulation tool provide up 

to 23% aggregate capacity gain compared to 

traditional GFFs. 

Methodology and Experimental Setups 

Given the optical signal-to-noise ratios (OSNRs) 

across the spectrum of a wavelength-division 

multiplexed (WDM) system, the capacity is esti-

mated as 𝐶 =  2𝑅𝑠 ∑ log2(1 + 𝜂 𝑆𝑁𝑅𝑘)𝐾𝑘=1  , where 𝑆𝑁𝑅𝑘 is the OSNR of the 𝑘-th of 𝐾 WDM channels 

(normalized to one polarization and a reference 

bandwidth equal to the symbol rate 𝑅𝑠), and 𝜂 ≤ 1 

accounts for transponder implementation penal-

ties and fiber nonlinearities. We can neglect fiber 

nonlinearity in a massive spatial diversity context; 

e.g., the optimized system in this paper uses 10-

dB lower optical power per spatial path than 

typical submarine systems. Although the capacity 

enhancement obtained by optimized GSFs 

becomes greater with 𝜂 < 1, we use 𝜂 = 1 without 

loss of generality. To experimentally determine 𝑆𝑁𝑅𝑘, we use the methodology developed in [3]; 

as shown in Fig. 1(a), a WDM transmitter (TX) 

emulator generates a 4-THz amplified spontane-

ous emission (ASE) comb using cascaded EDFAs 

and wavelength selective switches (WSSs). The 

ASE comb consists of 41 slots of 50-GHz low-

power ASE (emulating noise slots) and 40 slots 

of 50-GHz high-power ASE in between (emu-

lating signal slots), cf. Fig. 1(b). A subsequent 

EDFA and a variable optical attenuator (VOA) 

adjust the optical power launched into a typical 

submarine EDFA under test that is designed for 

a nominal span loss of 11 dB (excluding the GFF 

  

Fig. 1: (a) Experimental setup for training NNs, (b) measured optical spectrum at the TX OSA, and (c) experimental recirculating loop. 
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loss) at a nominal pump current ≥ 450 mA for a 

minimum gain tilt; see [3] for the characteristics of 

the EDFA under test. The input and output PSDs 

of the EDFA under test are measured by an 

optical spectrum analyzer (OSA). From the meas-

ured powers  𝑘  and  𝑘 , cf. inset to Fig. 1(b), with 

the subscript being the slot index and the 

superscript being the EDFA’s input (𝐼) or output 

(𝑂), we estimate the signal slot’s noise power by 𝑁𝑘 = ( 𝑘 +  𝑘 1 )/2 and the signal power by 𝑆𝑘 = 𝑘 − 𝑁𝑘 , eventually obtaining 𝑆𝑁𝑅𝑘 = 𝑆𝑘 /𝑁𝑘 . 
Training NNs with Measurement Data  

In this work, NNs are used to simulate a single 

EDFA, i.e., to produce the prediction (�̃�1:40𝑂 , �̃�1:41𝑂 ) 
of measured output powers (𝑿1:40𝑂 , 𝒁1:41𝑂 ) when 

arbitrary powers (𝑿1:40 , 𝒁1:41 ) are input to the 

EDFA, where 𝑿1:𝐾 /𝑂 denotes [ 1 /𝑂 , … ,  𝐾 /𝑂]. The 

structure of the NNs selected after topology opti-

mization is shown in Fig. 2(a), consisting of 81 

input neurons (𝑿1:40 , 𝒁1:41 ), two hidden layers of 

160 and 200 neurons each (both with sigmoid 

activations), and 81 output neurons (�̃�1:40𝑂 , �̃�1:41𝑂 ) 
(with softplus activation).  

 We collect the training data using the constant-

current mode of the EDFA at two pump currents 𝐼𝑃𝑢𝑚𝑝 = 150 mA, 450 mA (corresponding to pump 

powers of 205 mW and 675 mW, respectively). 
For each 𝐼𝑃𝑢𝑚𝑝, we launch 21,200 randomly 

shaped ASE combs, and measure the PSDs at 

the input and output of the EDFA. It takes 26 days 

to acquire all the training data with our fully 

automated system. Depicted in Fig. 2(b) is an 

example of measured 𝑺1:40  (blue circles) and 𝑵1:40  (orange squares) with overall SNR in the C-

band (denoted as 𝑆𝑁𝑅̅̅ ̅̅ ̅̅ ) of 20 dB, and with maxi-

mum signal and noise power excursions (denoted 

as ℱ𝑆 and ℱ𝑁, cf. Fig. 2(b)) of 28 dB and 12 dB, 

respectively. We pay particular attention to create 

random ASE profiles such that: (i) 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  varies in [−15, 37] dB, (ii) ℱ𝑆 varies in [0, 38] dB, (iii) ℱ𝑁 

varies in [0, 27] dB, and (iv) the input optical 

power in the C-band varies in [−3, 3] dB. Given 𝑆𝑁𝑅̅̅ ̅̅ ̅̅ , randomizations for (ii)-(iv) are performed 

independent of each other. This ensures that the 

NN learns any EDFA that receives a different 

OSNR across a submarine cable, whose input 

spectrum is arbitrarily shaped by the preceding 

EDFAs, GSFs, and fibers.  
 We train a set of 20 NNs for each 𝐼𝑃𝑢𝑚𝑝 using 

the logcosh loss function, and take an average of 

20 outputs as a prediction. Monte-Carlo cross-vali-

dation is performed with random subsampling[4]. 

Among the 21,200 data sets, 19,000 are used for 

training, and the rest for validation. Very close loss 

values are observed between the training and 

validation data, indicating no overfitting. Fig. 2(c) 

shows the probability mass functions (PMFs) of 

the prediction errors, defined as  𝑘𝑂 −  ̃𝑘𝑂 and  𝑘𝑂 − ̃𝑘𝑂, whose standard deviations are 0.33 dB for  𝑘𝑂 

(blue circles) and 0.24 dB for  𝑘𝑂 (orange squares).  

Optimizing the GSF for Maximum Capacity  

We measure a net span loss of around 10 dB from 

62-km Corning® Vascade® EX3000 fiber (shown 

in the inset to Fig. 3(a) as 𝓛1:81𝐹𝑖𝑏𝑒𝑟 for 81 signal and 

noise slots) including the Raman tilt at the two 
optical powers obtained with 𝐼𝑃𝑢𝑚𝑝 = 150 mA and 

450 mA in the loop experiment de-scribed below. 

Our NNs are trained with a varying optical input 

power, allowing 10 dB to 16 dB of fiber attenuation 

(i.e., 62 km to 99 km of span length); for simulation 

of a span length ≥ 62 km, we add a constant 

attenuation to the measured fiber loss. As shown 

in Fig. 3(a), our link simulator consists of a series 

of fiber, an EDFA, and a GSF in each span of an 

 

Fig. 2: (a) Structure of the NN, (b) an example of (𝑺1:40 ,𝑵1:41 ), and (c) PMF of the prediction error.  
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Fig. 3: (a) GD-based optimization (inset: simulator block for fiber and EDFA), and (b) shapes of the GFF and the optimized GSF. 
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𝑁-span link, where 𝑁 can be flexibly varied. To 

simplify the problem, we use identical spectral 

shapes for all GSFs. Without loss of generality, we 

launch flat signal powers into the system, then the 

simulator produces (�̃�1:40𝑂 , �̃�1:41𝑂 ) at the receiving 

end of the link, for a given GSF shape (denoted 

as 𝓛1:81 𝑆𝐹  in Fig. 3(a)). The received SNR (hence 

the capacity) can then be estimated as afore-

mentioned. We apply the approximate stochastic 

GD method[3] and iteratively update 𝓛1:81 𝑆𝐹  towards 

an ascending trajectory of capacity. 

 Fig. 3(b) shows the shape of the GFFs (blue 

dashed) and the optimized GSFs (orange solid) for 

a 25-span link with two span losses of 13 dB and 

16 dB (excluding the losses due to GFFs or GSFs) 
at 𝐼𝑃𝑢𝑚𝑝 = 150 mA. The optimized GSF for a 13-

dB span loss is similar to the corresponding GFF. 

Remarkably, however, when a gain tilt emerges 

for a span loss of 16 dB, the GSF no longer flat-

tens the low-frequency regime where the EDFA 

does not produce as large a gain as in the rest of 

the C-band; instead, it attenuates the optical 

power much less than the GFF across the whole 

frequency band, cf. Fig. 3(b). 

Experimental Validation 

We validate the NN-based capacity maximization 

approach using an equivalent 5-span recirculation 

loop experiments, as shown in Fig. 1(c); four 

spans are fiber spans and the 5th span of identical 

loss is emulated by the losses of a loop switch and 

a VOA. This approach is permissible due to the 

low launch powers and the resulting absence of 

noticeable nonlinearities. Dynamic gain equalizers 

(DGEs) with 4-dB insertion loss are used to realize 

both GFFs and arbitrarily shaped GSFs. Since the 

GFFs and GSFs can have a negligible insertion 

loss when built with the typical manufacturing 

process for submarine cables, we translate the 

DGE’s 4-dB insertion loss and additional 2-dB loss 

from 8 connectors per span into an added span 

length, yielding a total equivalent span length of 

99 km. Fig. 4(a) shows the experimentally meas-

ured 𝑺1:40𝑂  (circles), 𝑵1:40𝑂  (squares), and 𝑺𝑵𝑹1:40𝑂  

(triangles) after 5 loops (at equivalent 2,475 km), 

when the DGEs realize GFFs (top) and optimized 

GSFs (bottom), which agree very well with the NN 

predictions (pluses, crosses, stars), proving the 

high accuracy of our NN-based simulator. The 

GSFs enhance the SNR in almost all of the C-band 

at the expense of a reduced spectral bandwidth. 

 Fig. 4(b) shows the capacity of systems with 

GFFs (dashed lines) and GSFs (solid lines) at 𝐼𝑃𝑢𝑚𝑝 = 150 mA, predicted by simulation for span 

lengths of 62 km, 81 km, and 99 km. Also shown 

are the experimental results obtained with GFFs 

(squares) and GSFs (circles) for 99-km equivalent 

spans, where significant gains of up to 23% (at 

4,950 km) are observed. As expected, shorter 

spans offer a greater capacity, since the OSNR 

drop is less after every EDFA, but they also con-

sume more ESP per distance. The capacity per 

ESP of the systems with optimized GSFs is shown 

in Fig. 4(c), obtained by simulation (lines) for 62-

km, 81-km, and 99-km spans, and by experiment 
(circles) for 99-km equivalent spans, using 𝐼𝑃𝑢𝑚𝑝 =150 mA and 450 mA. It can be seen that a 

greater capacity per ESP is achieved by: (i) a 

smaller pump current and (ii) a longer span length, 

despite the EDFAs being more deviated from their 
design target (12.3-dB gain, 𝐼𝑃𝑢𝑚𝑝 ≥ 450 mA), cf. 

latest submarine cables use a small EDFA gain 

with short spans (e.g., 56.5 km[6]). This experi-

mental result is in line with the finding of [2], and 

shows that increasing spatial parallelism is better 

than maximizing per-path capacity under an ESP 

constraint. Importantly, optimized GSFs produce 

the highest capacity gain for the longest span 

length and for the smaller pump current, i.e., when 

the system has the greatest power efficiency 

(cf. Fig. 4(c)) with massive spatial parallelism. 

Conclusion  

We developed a versatile NN-based simulator on 

a per-EDFA basis, which predicts the evolution of 

the optical power spectrum across transoceanic 

distances with high accuracy. We introduced gain 

shaping filters instead of gain flattening filters and 

experimentally showed capacity gains of up to 

23% at transoceanic distances. 

We acknowledge Amonics Corp for supplying the 

EDFAs with removable GFFs, and Corning for the loan 

of the EX3000 fiber used in this experiment. 

 

Fig. 4: (a) Measurement after 25 spans (equivalent to 2,475 km) with 𝐼𝑃𝑢𝑚𝑝 = 150 mA using GFFs (top) and optimized GSFs 

(bottom), (b) capacity of systems with the GFFs (dashed, squares) and optimized GSFs (solid, circles), and (c) power efficiency 
of the systems with optimized GSFs.  
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