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Abstract We propose blind GMI estimation from received constellation diagrams, based on a convo-

lutional neural network. For coherent optical transmissions between 600Gb/s and 960Gb/s with vary-

ing modulation schemes, mean errors of 1.4% without and 0.8% with channel specific fine-tuning are

achieved, significantly outperforming previous methods.

Introduction

In modern optical communication networks, con-

nections can be dynamically rerouted in order to

adapt to changing network conditions. In-system

performance monitoring allows to scope which

links are able to offer the requested capacity. The

ultimate, thus desired, monitoring metric would be

the post-FEC BER. However, it is infeasible to re-

liably estimate it due to the target error rates lower

than 10−15. Hence, more common metrics for

in-system performance monitoring are pre-FEC

BER or Q-Factor, in combination with FEC limits.

Recently it has been shown that the general-

ized mutual information (GMI) is a better predictor

for post-FEC BER than the pre-FEC BER, when

using a soft decision (SD) FEC[1]. To determine

GMI, however, knowledge of the transmitted bits

is required, which is not available in a live system,

or comes at the cost of added overhead when

relying on dedicated preambles. We thus want

to estimate GMI blindly, without knowledge of the

transmitted bits.

While blind estimation approaches are widely

known for OSNR[2], modulation schemes[3], bau-

drate[4], or BER[5], blind GMI estimation has

not been studied yet to the best of our knowl-

edge. What comes closest is an approach to

blindly estimate the related asymmetric informa-

tion (ASI)[6]. However, this approach severely

lacks of accuracy in the experimentally assessed

use cases of this paper: Coherent 88Gbaud DP-

16QAM 600Gb/s, 92Gbaud DP-32QAM 800Gb/s

Fig. 1: Structure of the Convolutional Neural Network used to
blindly predict NGMI.

and 92Gbaud DP-64QAM 960Gb/s optical back-

to-back (BtB) measurements. In comparison, our

approach of blindly estimating GMI from buffered

received symbols with convolutional neural net-

works can achieve mean errors below 0.8%.

Background

The logarithmic likelihood ratios, also called L val-

ues, are defined as[1]

Lk = log

∑
x∈X 0

k
PX|Ck

(x|1)fY |X(y|x)∑
x∈X 1

k
PX|Ck

(x|0)fY |X(y|x)
, (1)

where X represents the transmitted symbols, Y

the received complex symbols, and k denotes

the bit which the likelihood ratio corresponds to.

fY |X(y|x) represents the likelihood of receiving

symbol y when transmitting x over the channel,

and X b
k is the subset of X with bit b at position k.

From the L values we can evaluate the GMI, an

achievable information rate recommended in[1] to

predict the the post SD-FEC BER:
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The normalized GMI (NGMI)[7] is defined as

NGMI = 1− 1

m
(H(B)−GMI). For mns transmitted

bits bk,l the GMI is then

GMI ≈ (3)
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We compare our method with a method that

blindly estimates the ASI which is equivalent to

the GMI, expressed in (2), with s = 1[8].

Convolutional Neural Network Based Blind

Estimation of Generalized Mutual Information

Convolutional Neural Networks (CNNs)[9] are a

subset of artificial neural networks, initially pro-



Fig. 2: Measurement setup including TX and Rx DSP with Blind GMI Monitoring

posed for image classification. In comparison

to fully connected neural networks, CNNs com-

prise convolutional and pooling layers. The in-

put of a convolution layer is convoluted by three-

dimensional filters which are defined by the corre-

sponding branch weights. Subsequently, the sig-

nal is fed into a pooling layer that reduces the di-

mension by compressing it with either max or av-

erage pooling. Our proposed network structure

is shown in Fig. 1. It consists of a convolutional

layer with 12 5 × 5 × 1 filters, followed by a 2 × 2

average-pooling layer, a convolutional layer with

16 3 × 3 × 12 filters and again 2 × 2 average-

pooling. The output of the last average-pooling

layer is flattened and used as input for two fully-

connected layers with 1024 and 512 units, fol-

lowed by a single output node. The input for our

network is a normalized 2D histogram of received

symbols, which can be regarded as an approxi-

mation of fY (y). As activation we use ReLU func-

tions[10] in all hidden layers and a sigmoid function

on the output.

During the training phase, known transmitted

sequences are used to evaluate the target NGMI

and to generate the corresponding input 2D-

histograms h for the CNNs. The histograms are

normalized as follows hi,j =
hi,j∑

i,j∈[0,nbin] hi,j
. We

generate our training set with 50000 histograms

and corresponding target labels and use them to

train the CNN using the Adam optimizer[11] with

learning rate 0.001 for 3000 epochs[12]. The train-

ing is rerun for each modulation scheme sepa-

rately. Each histogram is generated with 10000

symbols, and [64 × 64] uniformly distributed bins.

Moderate variations of input data size and net-

work structure did show no significant impact on

performance. For improved training accuracy with

a limited training set across the whole range of ex-

pected signal-to-noise (SNR) ratio or optical SNR

(OSNR), the captured data is scrambled for CNN

training.

Coherent Optical Measurement Setup

A coherent single-carrier dual-polarization (DP)

transmission system over a single mode fiber

(SMF) is employed to experimentally evaluate the

performance of the proposed CNN based blind

estimation of NGMI[13]. The setup and the of-

fline DSP stack is shown in Fig. 2. The mea-

surements were performed in a BtB configuration

at 1550 nm with ASE noise loading, in order to

compare NGMI at varying OSNR values. The

electrical signals are generated by a 100 GSa/s

DAC (Micram). Four SHF S804A amplifiers with

60 GHz bandwidth drive the RF signals. In the

optical domain, an external cavity laser (ECL)

source (1 kHz linewidth) generates a continuous

wave signal which is modulated by a LiNbO3 DP-

IQ modulator with 32 GHz bandwidth (Fujitsu-

FTM7992HM). At the receiver side, the optical

signal is combined with amplified spontaneous

emission (ASE) noise generated by an EDFA and

then amplified. After a stage of four 70 GHz bal-

anced photodiodes, the electrical signals are cap-

tured by a 110 GHz bandwidth real-time oscillo-

scope operating at 256 GSa/s.

Performance and Accuracy Evaluation

We evaluate two versions of our approach: The

”G-CNN”, which is trained on samples gener-

ated by a simulated Gaussian channel, and the

”F-CNN”, which is trained on data from the real

optical fiber channel. The methods are com-

pared to the blind ASI estimation method pro-

posed by Yoshida et al.[6], which we denote as

”Blind ASI”. Part of their approach compares the

histogram of L-values to a set of candidate Gaus-

sian functions. As our method is computation-

ally more complex, we quadruple the number of

these candidate functions to 32400 and use his-

tograms with 256 bins, which slightly improves

performance. Further increases did not yield no

additional gain. Finally, the ASI is calculated from

the discretized L-values, as in[6].



Simulated Gaussian Channel Measured Optical Channel

16-QAM 32-QAM 64-QAM 16-QAM 32-QAM 64-QAM

Proposed Blind F-CNN 1.52% 1.24% 0.74% 0.18% 0.76% 0.55%

Proposed Blind G-CNN 0.15% 0.21% 0.18% 1.36% 1.12% 0.76%

Blind ASI[6] 3.69% 3.47% 3.37% 2.26% 3.27% 5.44%

Tab. 1: Mean relative error in the estimation of NGMI, for Fiber CNN (F-CNN) and Gauss CNN (G-CNN), and mean relative error
in the estimation of ASI, for blind ASI.

  

Fig. 3: Simulations on a Gaussian channel.

We first evaluate our approach in simulations

upon a Gaussian channel model on basis of

16QAM, 32QAM and 64QAM. The training and

test data are generated independently. The re-

sults of the simulations for different SNRs are

shown in Fig. 3 and Tab. 1. The Blind ASI method

yields same accuracies as the reported accura-

cies by the authors in[6]. However, the G-CNN

significantly outperforms Blind ASI for both, lower

and higher SNR values.

The performance of a real optical fiber sys-

tem is shown in Fig. 4 and Tab. 1 on basis of

88Gbd DP-16QAM 600Gb/s, 92Gbd DP-32QAM

800Gb/s and 92Gbd DP-64QAM 960Gb/s BtB

measurements. The F-CNN is trained and hence

fine-tuned on the first received frame and remains

static for the following frames. This ensures strict

separation of the training and testing data. It

can be observed, that the F-CNN performs sig-

nificantly better than the Blind ASI. The Blind ASI

performs well on high NGMIs, however, loses ac-

curacy on lower values, while our approach re-

mains accurate. An advantage of the Blind ASI

over the F-CNN is that it does not require any

training data from the intended channel. There-

fore, to provide a comparison in a setting where

additional training on the intended channel is not

possible, the performance of the G-CNN, which is

trained only on the simulated Gaussian channel,

is evaluated on the optical channel. The G-CNN

performs significantly better than the blind ASI,

     

Fig. 4: Measurements on an optical back-to-back channel

despite not having additional information about

the optical channel either. This indicates that G-

CNN was able to learn a network that can be ap-

plied to realistic channels, without requiring ac-

cess to specific training data. Additionally, to in-

complete all combinations, the F-CNN, which is

trained and fine-tuned on the optical channel, is

applied on the simulated Gaussian channel. The

corresponding performance is shown in Fig. 3.

While less accurate is observed on very high

NGMI values, the F-CNN overall outperforms the

Blind ASI. This indicates that the F-CNN learned

a general enough model, which performs well on

other channels too, despite only having access to

one channel behaviour during training.

Conclusion

We propose a method to blindly estimate the gen-

eralized mutual information based on a convolu-

tional neural network. We evaluate two versions,

one trained only on a simulated Gaussian chan-

nel and one trained and hence fine-tuned on a

real optical fiber channel. We show significant

accuracy improvements compared to previously

proposed blind estimation methods in both, the

simulated Gaussian as well as the real coherent

optical channel. A mean error rates of 0.21% in

simulation and 1.4% without and 0.8% with fine-

tuning in measurements are achieved and verified

accross a broad set of modulation schemes and

high data rates.
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