
Open-Source QoT Estimation for Impairment-Aware Path
Computation in OpenROADM Compliant Network

Ahmed Triki(1), Esther Le Rouzic (1), Olivier Renais(1), Guillaume Lambert(1), Gilles Thouenon(1)

Christophe Betoule(1), Emmanuelle Delfour(1), Shweta Vachhani(2) and Balagangadhar Bathula(2)

(1) Orange Labs, 2 Avenue Pierre Marzin, Lannion, France, ahmed.triki@orange.com
(2) AT&T Labs, 200 Laurel Avenue South, Middletown, NJ, USA

Abstract Given the variety of open-source initiatives, we propose to use GNPy as reference for QoT
computation in multi-vendor optical transport networks. Therefore, we develop an API to allow GNPy
to dynamically interact with any controller, particularly TransportPCE which uses GNPy to validate com-
puted paths.

Introduction

Open-source development is a new scope in opti-
cal transport network that enables the main play-
ers in the field to push their views and needs
around challenging topics and issues. Mainly
supported by Telecom operators and academia,
interoperability is one of the topics addressed
by open-source communities in order to cope
with the reluctance of equipment suppliers to
adopt standardized models where designing their
equipment and services and unlock their propri-
etary network management systems (NMS).

Adopting open and common data models and
APIs (Application Programming Interfaces) facil-
itates the softwarization of the optical layer and
paves the way towards a fully-automated network.
Moreover, it accelerates the adoption of new func-
tions and innovative solutions by simplifying the
testing and the integration processes. In addition
to the technical advantages, openness allows op-
erators to adopt multi-sourcing policy and stim-
ulate competition between suppliers when pur-
chasing new equipment and services. In such
ecosystem, equipment suppliers are invited to
adopt a new business model based on providing
stand-alone hardware/software blocks instead of
a complete turnkey solution[1].

Many open-source communities are interested
in openness and interoperability and they study
this subject from different perspectives: open and
standard data-model, open-source code for con-
troller implementation and open tools for design
and performance estimation. OpenROADM Multi-
Source Agreement (MSA)[2] is one of the promis-
ing initiative that focuses on proposing vendor-
agnostic data models providing disaggregated
description of optical equipment, as well as, an
optimized and comprehensive view of the topol-

ogy and the network services. In order to show
the strength of these models, TransportPCE (T-
PCE)[3] project aims to provide a reference imple-
mentation of OpenROADM data-models[4].

T-PCE is an open-source project and a fea-
ture of OpenDaylight. Its primary function is to
control an optical transport infrastructure using
a non-proprietary south bound interface. T-PCE
provides also north bound interfaces to intercon-
nect with an Orchestrator, a higher layer Con-
troller and/or other software as showed in Fig. 1.

The interaction between T-PCE and other
OpenROADM non-compliant controllers/orches-
trators to establish an inter-domain path or sup-
port alien wavelength could rise issues concern-
ing the absence of reference to ensure some criti-
cal operations such as the estimation of the Qual-
ity of Transmission (QoT). In this context, GNPy
(Gaussian Noise in Python)[5] could be a favorite
candidate to handle this function since it is an
open-source tool able to assess optical impair-
ments and provide accurate QoT metric regard-
less of data model.

This paper highlights the latest developments in
T-PCE to use GNPy as reference to check light-
path feasibility and perform impairment-aware
path computation. In the next section, we de-
scribe the proposed API that transforms GNPy
from a design tool to a plugin module able to inter-
act with any controller particularly T-PCE. Then, in
the last section, we present the T-PCE path com-
putation algorithm and show some results.

T-PCE/GNPy Interface
GNPy is an open-source software that mod-
els and designs optical network considering the
specifications and settings of equipment as de-
fined by their vendors. By accurately simulating
optical propagation, GNPy becomes a potential



Fig. 1: Interaction between T-PCE and external modules

alternative to proprietary tools as well as a refer-
ence to fairly compare vendors’ solutions.

The computation of performance metrics in
GNPy is based on Gaussian Model taking into ac-
count linear and non-linear impairments. In order
to take advantage of the accuracy of GNPy en-
gine and use it in the path computation module
of T-PCE, we have developed a REST API allow-
ing real-time interaction between the two open-
source software via HTTP requests. The API pro-
vides methods to check if a path is optically feasi-
ble and to propose an alternative path otherwise.
Note that feasibility means that the path’s QoT
meets the transceiver performance requirements
in terms of SNR.

The API of GNPy is mainly based on Flask
RESTful framework[6] that provides a lightweight
web server gateway. The request/response for-
mat of the HTTP request is defined by YANG
models available in[7]. The body of the HTTP
POST request describes the network topology
and the service context. The topology descrip-
tion includes the list of elements (i.e., ROADM,
transceivers, amplifiers, fibers, ...) and the con-
nections between them. The service context
mainly consists of the source/destination nodes,
service requirements and constraints such as
bandwidth, transceiver mode and elements to in-
clude/exclude in the path. In the case of check-
ing path feasibility, the service context contains
also the list of elements composing the path in
question. The response of the HTTP POST re-
quest returns the list of elements of the path, a
boolean field indicating the feasibility of the path
and QoT path metrics (i.e., 0.1 nm OSNR, band-
width OSNR, 0.1 nm SNR and bandwidth SNR).
To ensure its portability and availability, the GNPy
code and its dependencies are packaged into a
Docker container that could run uniformly and
consistently across any platform or cloud.

On the T-PCE side, a GNPy interface mod-
ule is developed to create/analyze the GNPy re-
quest/response. The central task of the module

−25 −23 −21 −19 −17 −15 −13 −11 −9
Pin(dBm)/Channel in 50GHz bandwidth

22

24

26

28

30

32

34

36

M
in

im
um

 In
cr

em
en

ta
l O

SN
R 

(d
B)

Fig. 2: Noise Mask according to ROADM MSA

consists of matching between the OpenROADM
elements (i.e., equipment, topology and service)
and those of the GNPy YANG model. The cor-
respondence between the two data models has
been possible due to the flexibility of the Open-
ROADM model which offers three levels of topol-
ogy abstraction (i.e., “CLLI Network”, “Open-
roadm Network” and “Openroadm Topology”),
presenting the different disaggregation level of the
topology. Note that the OpenROADM equipment
specifications are directly integrated in the GNPy
equipment library without going through the API.

The major advantage of the API is that T-PCE
(or any other controller) does not need to imple-
ment comprehensive QoT estimator but rather re-
lies on GNPy and benefits from the evolution of
the tool which avoids duplication of effort. More-
over, in the absence of standard to compute some
metrics such as SNR, GNPy could be a cred-
ible reference to estimate QoT. This is particu-
larly useful in the case of computing a path cross-
ing many network domains adopting different data
models (i.e., multi-domain path).

Path Computation Algorithm and Results
In T-PCE, the Service Handler module (SH) re-
ceives service creation/deletion request coming
from a higher level controller or an orchestrator
via the northbound API. After checking the con-
sistency of the request and its compliance with
the OpenROADM service model, the SH trig-
gers the Path Computation Entity (PCE) module
by sending a path computation request (Internal
API). The request defines hard constraints related
to the nodes to be included/excluded in the path,
the PCE metric (number of hops is taken by de-
fault) and the maximum path latency.

In the first selection round, the PCE computes
the k-shortest paths based on Bellman-Ford al-
gorithm, sorts them according to their weights
and filters out those which have a number of
hops/ latency exceeding the upper limit. Then, as
second selection round, it computes the 0.1 nm
OSNR of each path until it finds the first one hav-



Fig. 3: Five-node network topology

ing an OSNR greater than the receiver OSNR
threshold. To compute the OSNR of the path,
the PCE uses the Noise Mask specified in the
OpenROADM MSA for ILA (In-Line Amplifier) and
ROADMs (Fig.2). If the GNPy container is prop-
erly connected to T-PCE, the PCE module sends
the candidate path to it for validation. To confirm
the feasibility of the path, the GNPy engine calcu-
lates the 0.1 nm SNR and compares it to the re-
ceiver OSNR threshold. The GNPy also rechecks
the amplifiers working point and the calculation of
the 0.1 nm OSNR.

If the path is not feasible, the PCE sends a new
request to GNPy, including only the constraints
expressed in the path computation request initi-
ated by the SH. GNPy then tries to calculate a
path based on these constraints and provides the
result to the PCE. The PCE translates the ele-
ments of the proposed path, if it exists, into their
corresponding nodes in the non-disaggregated
OpenROADM topology (i.e., “Openroadm Net-
work” in the MSA) then, computes its correspond-
ing path in the OpenROADM disaggregated topol-
ogy (i.e., “Openroadm Topology”). Finally, the
PCE forwards the results to the SH. The com-
plete implementation of this algorithm is available
on the OpenDayLight Magnesium Release[3].

We consider the topology of Fig. 3, com-
posed of five nodes. Each node is composed
of one OpenROADM 100-G transponder attached
to a ROADM. The mean ROADM-to-ROADM link
length is around 100 km and the fiber loss co-
efficient is equal to 0.25 dB/km. The amplifica-
tion of the signal is only performed in the ROADM
through the preamplifier and the booster. The
output power of the ROADM is fixed to 2 dBm.
The network is controlled by a T-PCE instance
connected to a GNPy docker. We create sev-
eral paths having different number of hops (from 1
to 4). Fig.4 shows the performance of lightpaths
as function of the number of hops. The dashed
dark line shows the OSNR tolerance of the 100G
receiver according to OpenROADM MSA[2]. We
notice that the 0.1nm OSNR computed by GNPy
perfectly corresponds to that computed by T-PCE.
The difference between the OSNR and the SNR
varies from 1 dB to 1.3 dB. Thus, in case the con-
nection to GNPy docker is not possible, the PCE

1 2 3 4
Number of hops per path

16

18

20

22

24

Pe
rfo
rm
an
ce
 [d
B]

0.1nm OSNR (T-PCE)
0.1nm OSNR (GNPy)
0.1nm SNR (GNPy)
100G TRx OSNR threshold

Fig. 4: QoT performance of multi-hop paths

should check the feasibility of the path by apply-
ing additional margin (of at least 2 dB) to the com-
puted 0.1nm OSNR in order to take into account
the non-linear impairments.

Conclusions
The variety of solutions proposed by open-source
communities to address interoperability in optical
network rises the need for reference tools to en-
sure critical operations. In this paper, we propose
to use GNPy as a third-party application to handle
the QoT estimation since it is model-agnostic and
provides accurate assessment of linear and non-
linear impairments. Our contribution consists of
creating a REST API for GNPy to transform it from
a design tool to an interactive module able to con-
nect in real-time with any controller/software. The
API is used by T-PCE to improve its impairment-
aware path computation algorithm by setting an
active exchange between the two modules taking
into account a set of constraints. This is the first
time that GNPy runs as a third-party plugin mod-
ule to assist a controller in real-time and it is also
the first time that T-PCE delegates one of its fea-
tures (i.e., computing and checking the feasibility
of optical path) to an external application.

References
[1] L. Alahdab et al., “Alien wavelengths over optical trans-

port networks”, IEEE/OSA JOCN, vol. 10, no. 11,
pp. 878–888, 2018.

[2] Openroadm multi-source agreement (msa) specification,
version 3.0.1, OpenROADM, Jul. 2019.

[3] Transport-PCE. (2020). Gerrit: Opendaylight code de-
posit website, [Online]. Available: https : / / git .

opendaylight.org/gerrit/q/project:transportpce.

[4] A. Triki et al., “Openroadm compliant sdn controller for
a full interoperability of the optical transport network”, in
ECOC, IEEE, 2018, pp. 1–3.

[5] J.-L. Auge et al., “Open optical network planning demon-
stration”, in OFC, Optical Society of America, 2019,
M3Z–9.

[6] Flask-RESTful. (2020). Project documentation, [Online].
Available: https://flask-restful.readthedocs.io.

[7] oopt-gnpy. (2020). Github: Telecominfra-project code
deposit website, [Online]. Available: https://github.
com/Telecominfraproject/oopt-gnpy.

https://git.opendaylight.org/gerrit/q/project:transportpce
https://git.opendaylight.org/gerrit/q/project:transportpce
https://flask-restful.readthedocs.io
https://github.com/Telecominfraproject/oopt-gnpy
https://github.com/Telecominfraproject/oopt-gnpy

	Introduction
	T-PCE/GNPy Interface
	Path Computation Algorithm and Results
	Conclusions

