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Abstract We assess the benefits of transfer learning based on artificial neural networks (ANN) using 
unbiased training data sets for QoT-estimation of unestablished light paths. This study considers transfer 
learning from the CONUS topology and from an unbiased training data set to the Germany50 topology.

Introduction 
Machine Learning (ML) is a branch of artificial 
intelligence and has been applied to many fields. 
However, its application in optical networks for 
quality of transmission (QoT) estimation is still in 
its infancy. Although numerous related research 
papers have recently appeared [1-6]. Nowadays, 
designing wavelength division multiplexed 
(WDM) networks usually leverages an offline tool 
that estimates QoT from an analytical model 
calibrated using experiments. With the arrival of 
ML applied to QoT estimation, two main 
directions can be found in the literature. The first 
one uses ML to increase the accuracy of the input 
parameters for a traditional offline analytical QoT 
tool [7-8]. The second one relies on ML to partly or 
completely supersede the existing QoT tool [9].  
 In this work, we focus on the latter one and, 
more specifically, on potential benefits of transfer 
learning based on artificial neural networks 
(ANN) using unbiased training data sets. Indeed, 
transfer learning is a promising solution for 
speeding up the training phase when different 
topologies need to be learnt [10]. 

Unbiased data set 
Our previous work[9] showed the importance not 
only of data representation but also of unbiased 
data set for all feature selections. By unbiased 
data set we mean a uniform distributed set of 
training samples at the input. If relying solely on 
data coming from the deployed network, the data 
sets will have a built-in bias in terms of the 
number of fibre spans per light path (LP). Indeed, 
usually to generate the training data set we use 
the existing LPs, which are most often routed 
along the shortest path between the source and 
destination nodes in the networks. If the shortest 
path has no available resource, the LP on the 2nd, 
3rd, etc. shortest paths will be considered. After a 
large number of accommodated services, with 
this allocation method, the number of spans per 
LP results to be Gaussian distributed, i.e. not 
uniform and, therefore, biased. Hence, since the 

training data is normally generated according to 
this allocation method, which produces a biased 
distribution, the prediction of a supervised ML 
approach trained on this set will be less accurate 
for the least frequent types of LPs in this set, i.e. 
on the Gaussian distribution tails where the LPs 
are exhibiting relatively small or high number of 
spans. To offset this potential bias, in this work 
we built a synthetic unbiased, i.e., uniform 
distributed, data set based on Germany50[11] 
topology. 
 In this paper, we consider 2 WDM network 
topologies: CONUS[12] and Germany50[11]. We 
generate 5 shortest light paths bridging each pair 
of nodes in these 2 topologies in go and return 
directions. In total, we consider 5x N x (N-1) LPs, 

 
Fig. 1: Three compared cases: (1) Transfer leaning from 

CONUS topology and fine-tuned with Germany50 (2) 
Transfer learning from unbiased data set and fine-tuned 

with Germany50 (3) Training and testing with 
Germany50 data set with no transfer learning 

 

 
 

Fig. 2: Data set: (a) Biased and (b) Unbiased (Tetris)  
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where N is the number of nodes in each topology. 
Therefore, for CONUS (where N=75) we consider 
5x75x74=27750 LPs and for Germany50 
topology (where N=50) we consider 
5x50x49=12250 LPs.  
 We also create a synthetic unbiased data set 
based on the Germany50 topology data set with 
the same total number of 12250 LPs and the 
same maximum number of spans in the longest 
LP (30). Unlike the previous set based on 5-
shortest paths, this data set has uniformly 
distributed number of LPs in terms of number of 
spans per LP (Fig.2). This way we avoid having 
dramatically smaller frequency of LPs with a very 
small or very high number of spans. Moreover, 
span lengths range uniformly between 30 km and 
80 km. 
 At the ANN’s input, each LP is presented as a 
list of span lengths and at the output its targeted 
the generalized optical-signal-to-noise-ratio (G-
OSNR) value obtained using a Gaussian noise 
(GN)-model. We consider both linear noise due 
to Erbium doped-fiber amplifiers (EDFA) and 
nonlinear effects along the WDM transmission, 
as well as optical filtering penalties. Based on the 
estimated G-OSNR, we allocate the most 
spectrally efficient modulation format out of the 9 
considered 32 GBaud channel modulations from 
100 Gb/s to 300 Gb/s, with steps of 25 Gb/s. In 
this study, we consider homogeneous amplifier 
noise figure (NF = 4.5 dB) and fiber attenuation 
(0.22 dB/km) along the transmission. Each 
transparent node traversal is represented in the 
data set by a span of 80 km. More details on the 
physical model used can be found in [9]. A feed-
forward shallow artificial neural network (ANN) 
with 20 fully connected sigmoid-activated 
neurons for the hidden layer and an identity-
activated neuron at the output layer is trained with 
the Levenberg-Marquardt backpropagation 
algorithm with 70%/15%/15% division for 
training/validation/testing.  
 

Simulations 
In this work, we compare QoT estimation 
accuracy of LPs belonging to Germany50 using 3 
different cases (Fig.1). In the first one, we train 
the ANN from scratch using CONUS data set and 
this pre-trained ANN-CONUS is being fine-tuned 
using data sets from Germany50. In the second 
one, we also use transfer learning but this time 
instead of using CONUS data set, as previous 
knowledge, we pre-train ANN from scratch with 
the created synthetic unbiased data set and fine 
tuning is done in the same way as in the first 
method, using the Germany50 data set. In the 
third, reference case, we do not apply any 
transfer learning, i.e., we perform a single-phase 
training (no dual phase with pre-training). 
Instead, ANN is being trained from scratch with 
Germany50 data set. In all 3 cases, for the sake 
of fair comparison, we test ML-based QoT 
estimation using the same testing data set from 
Germany50. 
 We are interested in the potential benefits of 
transfer learning in the first two cases and 
moreover of transfer learning with unbiased data 
sets compared to using ANN trained from 
scratch.  
 We train all ANNs using the same data, which 
is 70% out of (10%-100%) from Germany50 data 
set and we test using the non-used data in 

                      
Fig. 3: (a) Mean Absolute Error (MAE) and (b) Root Mean Square Error (RMSE) on the G-OSNR estimation 

 

 
Fig. 4: Probability of outliers 



 

 

training phase. This way, for example, in the case 
of training (fine-tuning) with 50% of Germany50 
data set, 70% out of 6125 LPs are used for 
training, 15% for validation and 15% for testing. 
Note that since we are considering a list of span 
lengths as a feature selection when representing 
a LP as input to ANN, each topology has a 
different number of input ANN values which 
corresponds to the max number of spans. In 
order to pretrain ANN with CONUS topology (max 
number of spans 106) and to test with 
Germany50 (max number of spans 30), we had 
to artificially add 76 (106-30) ANN input values, 
which were padded to zero, as it is usually done 
for shorter-than-maximum links. 

Results 
The results of the ML-based QoT tool are 
assessed in the form of absolute error, comparing 
to the ML-estimated G-OSNR to the one given by 
the analytical GN-model (ground truth). 
 Mean absolute error (MAE), root mean square 
error (RMSE) and probability of outliers are used 
as statistical metrics to measure ANN model 
performance. Outliers are the outcomes where 
the absolute error in G-OSNR estimation 
exceeds 1dB. We define the probability of outliers 
as the number of outliers divided by the number 
of total testing estimations. Results are averaged 
on 1000 runs, where training, validation and 
testing are done on different ANN realizations. 
 Fig.3 (a) shows the mean absolute error for G-
OSNR estimation for 3 cases: ANN pretrained 
with CONUS, ANN pretrained with unbiased 
(Tetris) data set based on Germany50 data set 
size, and for ANN with no pretraining, in a 
function of the percentage of data for training 
(size of the Germany50 training data set). Note 
that 10% of data for training, in Fig.3, 
corresponds to 858 training samples (70% out of 
10% of 12250 LPs) and 184 testing LPs (15% out 
of 10% of 12250 LPs). As expected, because of 
the bias in the Germany50 data set, MAE is the 
highest for a case with no transfer learning. The 
smallest MAE is obtained when pretraining ANN 
with unbiased data set based on Germany50.  
 It is interesting to notice that for smaller 
percentages of data for training, when pretrained 
with CONUS data set, which consists of 70% of 
total number of CONUS LPs (19425 LPs) MAE is 
higher than when pretrained with unbiased 
Germany50 based data set, which consists of 
70% of total number of Germany50 LPs (8575 
LPs). This means that pretraining with lower 
number of data can be more beneficial, if chosen 
carefully. It is useful to recall that CONUS data 
set is still biased, even though its bias results in 
a smaller error because of its bigger size. This 

MAE difference decreases along with the growth 
of the size of the training data. However, in 
practice the likelihood to be able to access to a 
large training data sets is low. 
 Fig.3 (b) shows the root mean square error for 
G-OSNR estimation for the same 3 cases 
presented in Fig.3 (a). Similarly, as in a case of 
MAE, we show the highest RMSE when no ANN 
pretraining and the smallest RMSE, for a small 
training data set when pretrained with the 
unbiased data based on Germany50. For a 
higher number of training LPs, the RMSE in case 
of pretraining with CONUS and unbiased 
Germany50 based data set converge. 
 Using pretrained ANN for G-OSNR estimation 
reduces not only the MAE and RMSE but also 
decreases the number of outliers. Fig.4. shows 
the distribution of outliers for all 3 cases. With the 
increase of training data set, the number of 
outliers is also decreasing. When pretraining 
ANN with unbiased data set, especially designed 
to reduce the number of outliers by having the 
uniformly distributed number of LPs, in terms of 
number of spans, we eliminate the possibility of 
not having sufficient number of samples of LPs 
with certain number of spans in the training data 
set. 

Conclusions 
We have shown the importance of ANN 
pretraining and transfer learning when using ANN 
for QoT estimation in WDM networks. We have 
also shown that the benefits are even higher if 
ANN is pretrained with the unbiased data set. 
This benefit is also visible even if the size of the 
pretrained unbiased data set is more than two 
times smaller than pretrained biased data set. 
This is a particularly important information when 
there is a lack of data for training. 
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