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Abstract Coded modulation techniques aim at reducing the required signal-to-noise ratio (SNR) over 
the Gaussian channel with an average energy constraint; however, such techniques tend to degrade 
the received SNR. We studied the balance of required and received SNRs for a realistic system design. 

Introduction 
Coded modulation[1-8] is one of the key 
technologies in optical fiber communication to 
realize better tradeoffs between performance and 
complexity. Forward error correction (FEC) 
efficiently eliminates bit errors, multilevel 
modulation controls spectral efficiency, and 
constellation shaping reduces the gap between 
the Shannon capacity and achievable rates for 
pragmatic modulation formats with uniformly 
distributed symbol probabilities. 
 Coded modulation is mainly studied for a small 
required signal-to-noise ratio (SNR) at a certain 
spectral efficiency (SE) and given hardware 
resources. Coded modulation techniques such 
as geometric/probabilistic shaping[1,2,4-7] with an 
FEC often use formats with a larger number of 
signal points, a larger peak-to-average power 
ratio (PAPR), and a larger kurtosis. These 
characteristics will not cause performance 
degradation over an ideal Gaussian channel with 
an average energy constraint. However, they 
may lead to a smaller received SNR[9] in practice 
due to limitations of the effective number of bits 
in digital-to-analog or analog-to-digital 
conversion (DAC/ADC), nonlinearity in analog 
devices such as the Mach-Zehnder modulator 
and its driver, and nonideal algorithms with finite 
precision in the digital signal processing (DSP). 
 True performance improvement in deployable 
systems is realized if and only if the reduction in 
the required SNR is larger than the one in the 
received SNR. Thus, in this work we analyze the 
behaviour of such SNRs from experimental data 
for several modulation/shaping cases. This 
characterization is useful for modelling the 
performance of coded modulation transceivers. 
We also compare the required optical SNR 
(ROSNR) and transceiver SNR assuming bit-
interleaved coded modulation (BICM)[3] or 
multilevel coding (MLC)[8] to find a good solution 
for deployable systems. 

Definition of SNRs 
In systems with many optical amplifiers, the 

dominant noise source is amplified spontaneous 
emission (ASE) from optical amplifiers. Here a 
Gaussian channel with an average energy 
constraint is assumed. Thus the system budget 
tends to be expressed in OSNR. In this work we 
set a noise bandwidth for the OSNR definition to 
the Nyquist limit, i.e., the symbol rate. On the 
other hand, the system performance is also 
influenced by the optical transceiver (including 
DSP). Modelling the transceiver imperfections as 
additive Gaussian noise[10] with a normalized 
variance , the total received noise variance is 
  (1) 

where  equals  and we neglect 
noise from fiber nonlinearity and the other 
impairments. Here we define the effective 
received SNR as  and the 
transceiver SNR as  The OSNR 

 can be measured from the optical 
spectrum, and  is inversely estimated from 
the obtained performance such as mutual 
information (MI), generalized MI (GMI)[11], 
normalized GMI[7], asymmetric information 
(ASI)[12,13], or uncertainty[6]. The transceiver SNR 

 is derived from (1) based on  and 
. Fig. 1 shows  as a function of 
 for different , where  denotes 

SNR degradation defined by . For 
 close to ,  becomes 

significant. Note that  typically ranges from 
14 to 21 dB in high baud rate cases[9]. Moreover, 

 
Fig. 1: Degradation of effective SNRs characterized by 

transceiver SNRs. 



 is not independent of  in practice 
because DSP parts such as the equalizer and 
carrier recovery become unstable in the low 
OSNR regime. 

Experimental conditions 
We investigate the SNR performance by offline 
experiments with a setup, which is almost the 
same as the one in Ref.[14]. In this work, we 
performed noise loading experiments only. The 
symbol rate was 24 Gsymbol/s and the signal 
was shaped with a 1% roll-off root-raised cosine 
filter. The linewidths of the transmitter and local 
oscillator lasers were 100 kHz. The receiver side 
DSP, which consisted of adaptive equalization 
and carrier recovery, was fully pilot-aided[15], 
enabling constellation-independent processing. 
The pilot signal was quadrature phase-shift 
keyed (QPSK), the insertion ratio was < 4%, and 
pilots and data had the same average symbol 
energy. Each captured data set consisted of ~ 
105 four-dimensional (4-D) symbols. 
 As coded modulation schemes, we 
investigated BICM[3] with uniformly distributed 8, 
16, 32, 64, and 128-ary quadrature amplitude 
modulation (QAM). Probabilistic amplitude 
shaping[4] was also considered, namely PS-16-
QAM with symbol entropy 3.4 
bit/channel use (bpcu), PS-64-QAM with 

 4.1, 4.6, 5.0, 5.2, or 5.7 bpcu, and PS-
256-QAM with  6.3 and 7.4 bpcu, where 

 and  denote entropy and 1-D symbol, 
respectively. Both BICM and MLC[8] were studied. 
The considered MLC treats only 1-D pulse 
amplitude modulation symbols. Two lines of 1-D 
absolute amplitudes for PS-64-QAM having 

 4.1, 4.6, 5.2, or 5.7 were generated by 
constant composition distribution matching 
(CCDM)[16] with an output block length of 1024 1-
D symbols. The amplitudes for the other PS-QAM 
were given by bit-level PS[5] with binary DMs[17]. 
 In both BICM and MLC, virtual FEC coding[18] 
for offline evaluation was assumed using a 
concatenation of soft-decision (SD) and hard-
decision (HD) FEC. The SD-FEC code rate was 
4/5 and the FEC threshold was an ASI of 0.86 (5 
dB for QPSK)[19]. A low redundancy (~1%) HD-
FEC with a bit-interleaver cleans up the residual 
bit errors[20]. The SD-FEC in the MLC protects 
only the least significant bits as information bits. 
Thus the total FEC redundancy and SD-FEC 
throughput in MLC were significantly less than 
that in BICM. 

Results: transceiver SNRs in BICM 
To characterize the transceiver SNR, we 
investigated cases with widely deployed BICM 
schemes. Fig. 2 shows the estimated transceiver 
SNR for BICM with (a) uniform QAM and (b) PS-

QAM. As a performance metric, we employed 
ASI. Based on the monitored ASI and SNR–ASI 
relationship over the ideal Gaussian channels, 
we derived  From the measured OSNR 
and ,  was obtained based on (1). 
There are several trends worth noting in Fig. 2. 
PS-QAMs have smaller  than uniform 
QAMs at large enough OSNRs (such as 25–40 
dB). The stronger the shaping is, the smaller the 

Fig. 2: Transceiver SNR as a function of OSNR for (a) BICM 
uniform QAM and (b) BICM PS-QAM. 

 

 
Fig. 3: Transceiver SNR at an FEC threshold as a function of 

(a) 1-D PAPR or (b) 1-D entropy for BICM uniform QAM 
(circles) and BICM PS-QAM (squares). 



 is for a given base constellation. The 
 is less dependent on base constellation or 

shaping depths but strongly dependent on OSNR 
when OSNR < 20 dB. This could be due to 
inaccuracy of the receiver DSP under such noisy 
conditions. According to these results, a fixed 

 in modeling (defined at a very high OSNR) 
would fail with a practical transceiver. 
 Clearly  around the FEC threshold for 
error free operation (e.g., ASI = 0.86) is more 
important than that at large OSNR. Fig. 3 shows 

 at the FEC threshold as a function of (a) 
1-D PAPR at 1 sample/symbol or (b) symbol 
entropy  for BICM uniform QAM (circles) 
and BICM PS-QAM (squares). In Fig. 3(a),  
is smaller for smaller base constellations and 
larger PAPR (i.e., deeper shaping). In Fig. 3(b), 

 depends on , and uniform QAM 
shows a larger  than PS-QAM at a given 

. These behaviors of  can critically 
influence the key performance of ROSNR, which 
we will analyze in the next section. 

Results: ROSNRs in BICM and MLC 
ROSNR is the  at the FEC threshold, 
which was derived from the monitored OSNR and 
the experimental performance (ASI) with the 
assumed FEC in both the BICM and MLC cases. 
Fig. 4 shows the ROSNR gap to the Shannon 
limit and the SNR degradation  at the FEC 
threshold as a function of information rate (IR) for 
(a) BICM and (b) MLC without DM rate loss[21]. 
The ROSNR reduction by BICM PS-QAM or MLC 
PS-QAM is significant (1.3–1.4 dB) over uniform 
32-QAM but smaller (0.6–0.7 dB) over BICM with 
uniform 16-QAM. PS-256-QAM shows better 
performance than BICM with uniform 128-QAM 
but almost no gain over uniform 64-QAM. Higher-
order QAM with a deep shaping (PS-256-QAM 
with  of 6.3 bpcu) suffers from a smaller 

 compared with uniform QAMs, which 
leads to a larger . Note that  is not so 
close to 0 dB even at IR  2.5 bpcu, due to a small 

 in noisy conditions, as shown in Fig. 2. 
 Fig. 5 shows the ROSNR gap without and with 
a DM rate loss of 0.1 bpcu, which is a realistic 
value for DM implementations for optical fiber 
communications[22,23]. The overall performances 
of BICM and MLC are similar. At information rates 
above 4.4 bpcu we see an improvement for MLC 
over BICM. With a DM rate loss of 0.1 bpcu, MLC 
PS shows better performance than BICM PS, and 
entirely beats uniform signalling over the IR range 
shown in Fig. 5, even with a small transceiver 
SNR due to PS. 

Conclusions 
We experimentally studied SNRs for the coded 
modulation schemes of BICM, BICM PS, and 

MLC PS. The transceiver SNR depends on the 
OSNR in the low OSNR regime and on the 
shaping depth in the high OSNR regime, resp. 
This should be reflected in the deployable system 
design. Uniform signals show higher transceiver 
SNR at a given symbol entropy or IR. A 
significant performance gain by BICM PS or MLC 
PS over uniform signaling remains in most cases 
under such a small transceiver SNR if the DM 
rate loss is within 0.1 bpcu. 
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Fig. 4: ROSNR gap to the Shannon limit and  as a 

functions of information rate with several base constellations
for (a) BICM and (b) MLC without DM rate loss. 

 
Fig. 5: ROSNR gap to the Shannon limit for BICM and MLC 

without and with DM rate loss (0.1 bpcu).  
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