
Supporting Beyond 5G Applications by Coordinating AI-based 
Intent Operation. An Example for Multilayer Metro Networks 

Fatemehsadat Tabatabaeimehr, Marc Ruiz and Luis Velasco* 

Optical Communications Groups, Universitat Politècnica de Catalunya, Spain, lvelasco@ac.upc.edu 

Abstract Intent-based Networking (IBN) promises facilitating autonomous decision-making for service 

assurance. In this paper, we extend IBN by coordinating AI-based intents targeting at supporting 

beyond 5G services, like immersive and Industry 4.0 applications, on metro infrastructures. 

Introduction 
5G and beyond applications will transform 
current industries and create new ones. 
However, for this to happen, the network needs 
to be much more flexible and automated to allow 
anticipating future events and conditions. 
Artificial Intelligence (AI) -empowered Intent-
based Networking (IBN) [1] simplifies network 
operation and provides the ideal framework for 
network automation[2]. Although in this paper we 
focus on the transport network, the conclusions 
are applicable to any segment; in fact, the 
network and the associated computing platform 
should behave as one single end-to-end entity, 
including radio and other access technologies, 
metro and core networks[3], as well as edge and 
cloud computing, to take full advantage of 
resources, wherever they are available, to 
provide the required Quality of Service (QoS) 
and Experience (QoE)[4]. 
In this paper, we propose coordinating intents by 
transferring knowledge[5] among them to be able 
to anticipate to ongoing events that however, 
cannot be predicted. The scenario that we focus 
on includes the autonomic operation of different 
beyond 5G applications, e.g., from industry 4.0 
which requires time sensitive network (TSN) 
communications, sharing the same 
infrastructure with applications with different 
requirements. In that regard, authors in [6] 
showed that mixing best effort (BE) and TSN 
traffic might result in noticeable degradation of 
the performance of the former, which deserves 
special attention to assure BE QoS. 
Coordinating Intent operation 
Fig. 1 presents an example of a multilayer metro 
network with two customer and two 
infrastructure intents each operating 
independently. Intent CI-A is in charge of 
Customer A TSN connection between two 
factory networks in sites 1 and 2 (A1-A2) and 
CI-B operates on a service for a drone (mobile) 
application that captures video and requires high 
bitrate with low latency to a metro datacenter. II-
1 manages the virtual link (vlink) R1-R3 and II-2 
operates on vlink R2-R3; vlinks are supported 
by one or more lightpaths in the optical layer. 
Let us imagine that customer intents CI-A and 
CI-B know about real service needs and they 

can demand for service reconfiguration, which 
would entails not only managing the connection 
capacity but also creating and releasing 
connections. In the example, CI-A can request 
additional capacity for connection A1-A2 during 
production peak hours and reduce such capacity 
when it is not more needed, and such changes 
can be as a consequence of factory 
management decisions. In addition, CI-B is 
aware of the geoposition of the drone and 
creates new connections to the metro data 
center as the drone moves. 
Regarding infrastructure intents II-1 and II-2, 
they know about the services that they are 
supporting and their required performance. They 
can monitor the incoming traffic to model them 
and try to predict future variations, which is used 
to manage the capacity of the vlink (by adding or 
removing lightpaths). However, they cannot 
predict application decisions. 
In the example in Fig. 1a, the factory 
management could make a decision to increase 
the production, which would require more 
capacity in the TSN connection A1-A2. 
Regarding the drone application, it moves from  
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Fig. 1: Example of intent-triggered reconfiguration 
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Fig. 2: Possible architecture supporting intent coordination 

cell-1 in Fig. 1a to cell-2 in Fig. 1b, and so the 
traffic to the data center, as the intent CI-B 
manages the connectivity. Note that both 
customer connections in Fig. 1b use the same 
resources, which could result into poor service 
performance and even degrade the QoE of the 
drone application to an intolerable extent. Intent 
II-1 will realize of the poor performance by 
analyzing monitoring data and then it can create 
a parallel lightpath to increase the capacity of 
vlink R1-R3, which might take about 1 min. 
Our solution for smooth operation is that 
customer and infrastructure intents coordinate 
among them. For instance, the intent in charge 
of connection A1-A2 can anticipate an increment 
of traffic in that connection, and the intent in 
charge of the connectivity for the drone can 
anticipate the need of a new connection from 
cell-2 to the metro data center, both with enough 
anticipation for the infrastructure intent in charge 
of vlink R1-R3 to react and increase the capacity 
or, on the contrary, reject the request if no 
resources are available. 
Fig. 2 presents a possible architecture that 
supports a hierarchy of intents (the optical layer 
is omitted for the sake of simplicity), where the 
blocks in the intents are in line with [1]. Customer 
intents run in the customer / application 
controller, whereas infrastructure intents run in 
the network control and orchestration layer. 
Interfaces for provisioning and configuration are 
available at the network and orchestration layer 
for the customer controller to request new 
customer connections and to reconfigure them 
and monitoring data is collected by the network 
and orchestration layer and exported to the 
customer intents. In addition, knowledge is 
transferred bottom-up and top-down among 
intents to support coordination. Note that other 
possible option is to integrate customer intents 
in the network control and orchestration to 
facilitate data and knowledge exchange. 
The next section focuses on the analyze and 
aggregate block of the vlink intent in Fig. 2 and 
presents a procedure that integrates the 
knowledge shared by customer connection  
 

Table 1: vlink traffic prediction with knowledge sharing 

Input: X̂C, xt, predRequest Output: x̂t+δ 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Q←getKnowledgeDB() 

X←getTrafficMonitoringDB() 

f←getVlinkTrafficModel() 

if X̂C != ∅ then 

for each <x̂i
t+k, pi

t+k> ∈ X̂C do 

updateKnowledgeDB(Q(i), <x̂i
t+k, pi

t+k>) 

if xt != ∅ then 

updateMonitoringDB(X, xt) 

validateTrafficModel(X, f) 

if !predRequest then return ∅ 

<x̂C
t+δ, pC

t+δ>←predictFromKnowledge(Q, δ) 

<x̂V
t+δ, pV

t+δ>←predictFromModel(f, δ) 

return ensemble(<x̂C
t+δ, pC

t+δ>,<x̂V
t+δ, pV

t+δ>) 
 

intents for the prediction of vlink traffic. 

Analyze / Aggregate module for vlink intent 
The procedure in Table 1 presents the main 
procedure that is executed either when: i) a new 
vlink traffic monitoring sample xt or customer 
connection traffic prediction X̂C (knowledge) 
becomes available; or ii) a vlink traffic prediction 
request is needed. It is worth highlighting that 
autonomic vlink management requires 
computing traffic prediction with enough 
anticipation to ensure that optical connections 
can be setup (if needed). Such prediction needs 
thus to be performed for a δ time window (e.g., if 
1 min is required for setting up an optical 
connection, δ can be set to 2 min). 
The procedure is in charge of updating the 
repositories with knowledge shared by intents 
(Q) and monitoring traffic (X). For the sake of 
simplicity, we can assume that both repositories 
centralize data for all the vlinks in the network. 
In addition, the vlink intent manages its own 
traffic prediction model (f). Lines 1-3 in the 
algorithm in Table 1 get access to the 
repositories and the traffic prediction model. 
Since knowledge and monitoring might have in 
general different granularity, they are managed 
separately and specific models for each one 
needs to be obtained. When new knowledge X̂C 

is provided in current time t, the block updates Q 
(lines 4-6). Every element in X̂C contains traffic 
prediction of customer connection i for the next 
time interval [t, t+k], as well as a fitness score p 
that indicates how likely is the traffic prediction.  
When a new monitoring sample xt is provided, 
the monitoring repository X is updated, and the 
traffic model is evaluated to detect whether it 
needs to be retrained or some adjustment is 
needed (lines 7-9). 
When a new prediction is requested (line 10), 
two different traffic estimations are computed. 
First, individual predictions for each customer 
connection are obtained from data in Q. To this 
aim, polynomial interpolation is used to obtain 
the estimation and score at exact time t+δ. The 
sum of all individual connection estimations and 
the most restrictive (smallest) score is the  
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Fig. 3: Accuracy and vlink dimensioning performance results 
 

result of knowledge-based prediction (line 11). 
Second, the prediction with the aggregated vlink 
model is computed (line 12). Both predictions 
are ensembled to return a single traffic 
estimation (line 13); in the ensemble, the 
estimation with highest score is selected. 
Illustrative Results 
Let us evaluate the benefits of implementing 
knowledge sharing between customer and 
infrastructure intents, as compared to a baseline 
IBN approach without such knowledge sharing, 
where traffic prediction is based on a vlink traffic 
model trained with the observed traffic. 
For the numerical evaluation, scenarios 
reproducing that depicted in Fig. 1 have been 
generated by means of a customer connection 
traffic generator based on the models and 
methodology in[6] to emulate industry 4.0 and 
immersive mobile applications. The vlink traffic 
prediction model was based on artificial neural 
network (ANN) with 10 hidden neurons and a 
sigmoid activation function that uses short-term 
traffic characterization features, in line with [5]. 
The ANN achieves accurate prediction for δ=2 
minutes (max error <5%) for aggregated traffic. 
Sudden traffic changes (perturbations) due to 
customer operation were introduced using a 
Markov-based model and a multiplicative factor 
to increase or decrease the generated traffic. 
Fig. 3a shows the maximum prediction error of 
both approaches normalized w.r.t. that when no 
perturbations are added vs. perturbation 
magnitude (computed as the relative traffic 
variation introduced). Let us assume that both 
traffic monitoring data and knowledge sharing 
are received with a frequency of 1 per minute. 
We observe that sharing knowledge provides 
virtually zero added error regardless of 
perturbation magnitude, in contrast to no sharing 
knowledge, which presents large inaccuracy as 
soon as perturbation magnitude increases 
(150% of added prediction error for 
perturbations introducing 100% traffic variation). 
Assuming such high frequency for knowledge 
sharing can be not realistic. In fact, knowledge 
could be shared only to anticipate large traffic 
changes. In such case, the accuracy of 
interpolation is critical to retrieve valuable 
knowledge for the desired prediction time. Fig. 
3b shows the difference in terms of mean 
square error (MSE) between the prediction 

using all available knowledge and that when 
shared knowledge includes only a percentage of 
that traffic between perturbations (extra 
knowledge). The curves aggregate several 
cases, where consecutive perturbations were 
spaced from 5 minutes to 24 hours. We observe 
that negligible MSE (<0.001) is achieved when 
~5% of extra data is shared. The embedded 
table shows that for frequent perturbations (from 
5 to 60 min) no extra data is actually required, 
whereas frequencies of minutes are enough 
when perturbations are less frequent. In 
conclusion, knowledge sharing enormously 
improves traffic prediction and requires small 
amount of data to be shared between intents. 
Let us now evaluate the impact of traffic 
predictions in terms of optical capacity 
resources utilization. We emulated the vlink 
intent lI-1 operation in the scenario in Fig. 1b, 
where the vlink supports two types of flows: i) a 
fixed large industry 4.0 customer connection 
(400Gb/s average traffic) subject to large 
perturbations every 8 hours; and ii) a variable 
number of 100 Gb/s mobile connections that are 
dynamically routed through the vlink. 
Fig. 3c shows the average and max capacity in 
terms of 100 Gb/s optical connections required 
to support the traffic vs. the intensity of mobile 
traffic (the larger the intensity is, the larger the 
number of dynamic mobile connections to be 
supported). In addition, Fig. 3d shows the 
amount of customer traffic that cannot be served 
as a result of unavailable capacity in the vlink. 
The results in Fig. 3c show that both 
approaches allocate similar amount of optical 
connections on average with higher peaks of 
capacity when knowledge is shared. Such extra 
capacity is needed to serve the requested traffic, 
as shown in Fig. 3d; in fact, unserved customer 
traffic drops several orders of magnitude (~2 in 
maximum and ~5 in average) when knowledge 
is shared. 
Conclusions 
In conclusion, IBN exploiting knowledge sharing 
between customer and infrastructure intents is a 
promising solution for network operators to 
support B5G applications. 
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