
Reinforcement Learning -based
Autonomous Multilayer Network Operation

Sima Barzegar, Marc Ruiz, and Luis Velasco*

Optical Communications Group, Universitat Politècnica de Catalunya, Spain, * lvelasco@ac.upc.edu

Abstract We propose an Intent-Based Networking solution based on Reinforcement Learning (RL).
RL-based intents with specific operational objectives and coordinated operation between network
layers are developed. Results show service assurance with automatic adaptation to changing traffic.

Introduction
Advances in network automation [1] are receiving
huge attention from the industry as the
complexity of the network increases and the
requirements from the services become more
and more stringent and diverse. Network
automation entails the collection of performance
monitoring data that are analyzed (e.g., using
Artificial Intelligence (AI) / Machine Learning
(ML) techniques), and the extracted knowledge
used to make decisions, thus defining control
loops. However, several aspects and practices
related to network automation need to be
standardized and in fact, new concepts like the
Intent-based Networking (IBN) [2] are currently
under study by standardization bodies. IBN
allows the definition of operational objectives
that a network entity, e.g., a connection, has to
meet without specifying how to meet them. IBN
is in charge on implementing and enforcing
those goals, often with the help of AI/ML.
In this paper, we go beyond multilayer network
automation by demonstrating an IBN solution
based on Reinforcement Learning (RL)[3], where
customer-level operational objectives are
propagated creating a hierarchy from the
customer connections to the virtual links (vlink)
and finally to the optical layer. RL fits well with
IBN as it entails learning how to map situations
to actions to maximize some reward, without
specifically programming the learner.
RL-based autonomous operation
A reference example is presented in Fig. 1,
where a multilayer transport network supports
two customer connections A-D and B-C on top
of the virtual network topology, where packet
nodes (labelled Ri) are connected through
vlinks, each supported by lightpaths on the
optical layer. The customer connections can
support services with different operational goals
in terms of delay and throughput, so their
capacity needs to be properly dimensioned.
Instead of a fixed capacity dimensioning,
however, such capacity can be dynamically
adjusted to reduce overprovisioning. As a result
of such dynamic capacity allocation, the vlink
capacity can be also dynamically managed by
establishing and releasing parallel lightpaths
between the end packet nodes.

The inner graphs in Fig. 1 show the evolution of
the traffic and the capacity of each entity
(customer connection and vlink). For the sake of
simplicity, let us assume that customer
connections can adjust their capacity with a
given granularity, e.g., 10 Gb/s, whereas each
parallel lightpath supporting the aggregated
capacity of the vlink has a capacity of 100 Gb/s.
Therefore, the capacity of the entities can be
adjusted to closely follow the input traffic in such
entity by just establishing thresholds, so when
the traffic exceeds or goes below a given
threshold, their capacity is automatically
increased or reduced. However, such threshold-
based approach lacks the needed flexibility to
introduce any different operational goal, in
particular for customer connections, e.g., it is
difficult to link maximum delay requirements with
the required capacity of the connection. The
inner graph for connection B-C in Fig. 1 shows
the capacity adjustments performed assuming
that the operational goal of the connection is to
minimize the allocated capacity to reduce
connectivity costs, by following as close as
possible the input traffic while avoiding traffic
loss. Note that this objective could be attained
by means of ensuring the required threshold.
However, in the case of connection A-D, the
capacity was adjusted to ensure some
maximum end-to-end delay; in spite of the
subtle difference in the graphs in Fig. 1
compared to connection B-C, the capacity of
connection A-D is always large enough with
respect the input traffic to ensure that the delay
added by the time spent in the queues is under
the given maximum. With this capacity
requirements, vlinks can be easily managed,
i.e., the capacity of vlink R1-R2 varies after
adding or releasing one lightpath.
To manage the capacity of the entities, in this
paper we propose an IBN approach, where
intents are based on RL. RL agents receive
performance measurements from the network,
as well as some reward that can be tuned as a
function of the given operational goals, and are
able to learn how to maximize such rewards in
the long-term by generating the required actions
to the environment. In our case, each intent
consists of a RL agent managing the capacity of

each entity and an
environment module that
abstracts the connectivity
entity and computes rewards
from the measurements that
are used by the RL agent to
learn (Fig. 2). Each customer
connection intent collects the
amount of input traffic that is
injected to the connection, as
well as some other data as

R1

R2
R3

Transport Network

Customer
connection

B

A

C

D
vLink

Connection B-C

Connection A-D

vLink R1-R2

Fig. 1: A Multilayer scenario with two customer connections

packet loss and delay and it determines the
capacity of the connection that will be needed to
meet the given operational goals for the next
period (e.g., few minutes). A reward function
uses the measured data and is programmable
by tuning parameters that allow adjusting the
behavior of the RL agent for e.g., keeping the
total delay below a given maximum or to
minimize the capacity; in both cases ensuring
zero packet losses. In the case of the vlink
intent, it receives as input the total capacity that
every customer connection will require for the
next period, as well as the aggregated amount
of input traffic and the actual capacity of the
vlink, and it is in charge of managing the vlink
capacity to guarantee the aggregated capacity
required by the customer connections by
establishing/tearing down lightpaths. Note that
while modifying the capacity of the customer
connection entails programming some rules in
the packet nodes and that capacity becomes
immediately available, adding more capacity to
the vlink entails establishing a new lightpath,
which requires some time (e.g., one minute).
Then, the vlink intents must make decisions with
enough time to guarantee capacity availability.
In the next section, we present a RL model
based on Q-learning[3] that fits with the needs of
both customer connection and vlink intents.
RL approach based on Q-learning
Q-learning is a model-free discrete RL technique
that involves ns states and na actions, and it is
able to learn the optimal policy represented by a
Q-table of pairs <state, action>. After taking an
action, the RL agent observes the new state and
gained reward and updates the Q-table
accordingly [3]. In our approach, the computation
of state and reward, as well as the actions to be
taken, are evaluated periodically (e.g., every
minute) when a new set 𝒳(t) of measurements,
statistics (i.e., max, min and avg of the last
monitoring samples), and parameters are
available for the connection or vlink (we call this
episode). The state at time t has been defined to
reflect how close the entity is to its limit, see in
eq. (1), where y∈𝒳 is the selected measurement
and z∈𝒳 is its current limit. Table 1 defines y
and z for the three identified problems, labelled
(a), (b), and (c).

RL agent

Environment

Actions
State,
reward

RL agent

Environment

Actions
State,
reward

Assure
Max Delay < d

RL agent

Environment

Actions
State,
reward Minimize

Capacity

vLink

Customer
Connection

•Capacity,
• Input traffic,
•Packet Loss,
•Delay

Capacity

Capacity

Customer
Connection Intent

vLink
Intent

• Input traffic,
• Capacity

• Manage capacity of
customer connections

• Manage vLink Capacity
(e.g., by creating parallel
lightpaths)

Fig. 2: RL-based connection and vlink intents

Table 1: State components for customer / vlink
(a) Customer

[Min cap]
y(t): max(input traffic) (b/s)
z(t): current capacity (b/s)

(b) Customer
[Assure delay]

y(t): max(delay) (s)
z(t): delay to be assured (s)

(c) vlink
[Assure cap]

y(t): max(input traf,𝜮(cust. cap.)(b/s)
z(t): current cap (b/s)

Table 2: Reward function components
fi(X(t)) φ(a) φ(b) φ(c)

Underprovisioning: packet loss > 0 -100 -100 0
Cap/delay limit violated: y(t) > z(t) 0 -100 -100
Capacity overprov: z(t) - y(t) > k -10 -10 -10
Fitted provisioning: z(t) - y(t) < k 10 0 10

𝑠(𝑡) = min (⌈𝑛𝑠 · 𝑦(𝑡)/𝑧(𝑡)⌉, 𝑛𝑠) (1)

The reward function r is generalized as follows:

𝑟(𝑡) = 𝜑0 + ෍ 𝜑𝑖 · 𝑓𝑖(𝒳(𝑡))

𝑖∈𝑚

(2)

where the Boolean function fi(·) returns 1 if the
condition is met and 0 otherwise, and the
coefficient φi penalizes (<0) or promotes (>0) the
result of the operation; besides, φ0 ensures a
non-zero result. Error! Reference source not
found. describes the components and
coefficients for the three identified problems,
where k refers to the size of a capacity unit and
φ0=1. For capacity over-provisioning (third row),
we consider that both x and z refer to traffic and
capacity, respectively, including for problem (b).
Finally, the action (number of k-size units to be
added/subtracted) with highest reward with
probability 1-ε (exploitation) or randomly with
probability ε (exploration) is selected [3].

0 200 400 600 800 1000
-70
-60

-50

-40
-30

-20

-10
0

10

5

7

9

11

13

5 6 7 8 9 10

RL[avg] RL[max]
thr[avg] thr[max]

Input traffic (Gb/s)

Cu
st

om
er

 ca
pa

ci
ty

 (G
b/

s)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

0.8 0.85 0.9 0.95

RL capacity savings
avg ~ 1Gb/s
max 2 Gb/s

thr α

(sharp)

Scenario Capacity [Gb/s]
Thr RL

smooth 128 140
med 138 136

sharp 153 136

(med) (smooth)8

9

10

11

12

G
b/

s

time

episodes

Re
w

ar
d

Tr
af

fic
 lo

ss
 (b

/s
)

(a) (b) (c)

0

Fig. 3: RL convergence (a), capacity of customer connection for α=0.8 (b), and traffic loss in vlink (c)

Table 3: Customer operational objectives performance

Objective
Capacity (Gb/s) Delay (ms)
avg max avg Max

Minimize
Capacity

8.1 11
1.5

(11%)
566

(27510%)
Delay
< 5 ms

9.2
(13.6%)

13
(18.2%)

1.35 2.05

Illustrative Numerical Results
For numerical evaluation purposes, we have
generated synthetic traffic flows for customer
connection and vlinks according to the
methodology and traffic models used in[4]-[5].
Using such generator, we emulated different
number of traffic, generating more than 100,000
different samples to be collected and processed.
We implemented Q-learning in Python3 and
initially configured ε=0.2 with a decay strategy.
Fig. 3a shows the learning curve of the RL agent
in terms of the average reward vs. the number
of episodes for a customer connection. We
observe that the RL agent quickly converges to
the maximum reward, thus learning how to
closely adjust the capacity to the actual traffic;
similar learning curves for other customer and
vlink traffic flows have been obtained. The inset
in Fig. 3a shows a detail of such capacity
adjustment (orange line) for an example of a
customer connection flow (grey markers) with
remarkably different daily traffic patterns.
To illustrate the impact of the operational
objective on the actions taken by the RL agent,
we run the same examples of customer
connection traffic flows according to the two
different objectives (a) and (b) defined in the
previous section, while ensuring zero losses; the
obtained average and maximum capacity and
delay are summarized in Table 3. We observe
from the results that the RL agent meets the
selected objective; it either allocates minimum
capacity at the expenses of increasing delay or
it adds more capacity to assure that the max
delay is not exceeded. Note the high max delay
experienced by the traffic when the capacity
minimization objective was configured, in
contrast to the limited increment in the capacity
allocation when max delay was assured.
Let us now compare the performance of the
proposed RL agent against a reference
threshold-based approach that adds/releases
capacity to keep relative capacity utilization
above parameter α ∈ [0,1]. Fig. 3b shows the
required capacity for customer connection

intents as a function of the magnitude of the
input traffic. The threshold-based approach was
configured with α=0.8 to ensure zero traffic loss.
For the sake of fairness in the comparison, the
operational objective has been configured to
minimize the capacity, as the threshold-based
approach cannot ensure maximum delay. In the
results, we observe that the RL agent produces
the best performance in the whole range of input
traffic studied, significantly improving capacity
utilization for low/moderated input traffic volume;
the inner table shows savings as high as ~30%
(2 Gb/s) per customer connection.
Finally, the hierarchical coordination of customer
connection and vlink intents (see in Fig. 2) has
been evaluated in terms of the allocated vlink
capacity. To this end, we generated several
scenarios by aggregating customer connections
in a vlink; scenarios go from smooth to sharp
variation between consecutive traffic
measurements. A baseline method based on the
threshold-based approach with no coordination
between intents was implemented. Fig. 3c
shows the maximum traffic loss (computed as
the maximum amount of traffic exceeding
capacity) for different values of α. We observe
that different scenarios result into different
optimal configuration of α, i.e., the largest α that
produces zero loss. It is clear, in view of Fig. 3c,
that a procedure to determine the best α
according to input traffic characteristics is
needed to achieve a high performance using a
threshold-based approach. In contrast, the
proposed RL agent adapts to different traffic
characteristics in an automatic and robust way.
The inner table compares the average capacity
allocated by the RL agent with that of the
threshold-based with the optimal α for every
scenario (both operating with 0 losses). We
observe that the RL agent allocates similar
capacity regardless of the scenario, whereas the
threshold-based approach overprovisions
capacity when traffic changes are sharper.
Conclusions
Coordinated operation of RL-based intents in
multiple layers has been proposed. Remarkable
performance under traffic variations and
different operational objectives has been shown.
Acknowledgements
The research leading to these results has received
funding from the EC through the Spanish MINECO
TWINS project (TEC2017-90097-R) and from ICREA.

References

[1] D. Rafique and L. Velasco, “Machine Learning for
Optical Network Automation: Overview, Architecture
and Applications [Invited Tutorial],” IEEE/OSA
Journal of Optical Communications and Networking
(JOCN), vol. 10, pp. D126-D143, 2018.

[2] A. Clemm et al. (Eds.), “Intent-Based Networking -
Concepts and Definitions,” IRTF draft work-in-
progress, Mar. 2020.

[3] R. Sutton and A. Barto, Reinforcement learning: an
introduction, MIT Press, 1998.

[4] M. Ruiz, F. Coltraro, and L. Velasco, “CURSA-SQ: A
Methodology for Service-Centric Traffic Flow
Analysis,” IEEE/OSA Journal of Optical
Communications and Networking (JOCN), vol. 10, pp.
773-784, 2018.

[5] A. Bernal, M. Richart, M. Ruiz, A. Castro, and L.
Velasco, “Near Real-Time Estimation of End-to-End
Performance in Converged Fixed-Mobile Networks,”
Elsevier Computer Communications, vol. 150, pp.
393-404, 2020.

