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Abstract We propose an Intent-Based Networking solution based on Reinforcement Learning (RL). 
RL-based intents with specific operational objectives and coordinated operation between network 
layers are developed. Results show service assurance with automatic adaptation to changing traffic. 

Introduction 
Advances in network automation [1] are receiving 
huge attention from the industry as the 
complexity of the network increases and the 
requirements from the services become more 
and more stringent and diverse. Network 
automation entails the collection of performance 
monitoring data that are analyzed (e.g., using 
Artificial Intelligence (AI) / Machine Learning 
(ML) techniques), and the extracted knowledge 
used to make decisions, thus defining control 
loops. However, several aspects and practices 
related to network automation need to be 
standardized and in fact, new concepts like the 
Intent-based Networking (IBN) [2] are currently 
under study by standardization bodies. IBN 
allows the definition of operational objectives 
that a network entity, e.g., a connection, has to 
meet without specifying how to meet them. IBN 
is in charge on implementing and enforcing 
those goals, often with the help of AI/ML. 
In this paper, we go beyond multilayer network 
automation by demonstrating an IBN solution 
based on Reinforcement Learning (RL)[3], where 
customer-level operational objectives are 
propagated creating a hierarchy from the 
customer connections to the virtual links (vlink) 
and finally to the optical layer. RL fits well with 
IBN as it entails learning how to map situations 
to actions to maximize some reward, without 
specifically programming the learner. 
RL-based autonomous operation 
A reference example is presented in Fig. 1, 
where a multilayer transport network supports 
two customer connections A-D and B-C on top 
of the virtual network topology, where packet 
nodes (labelled Ri) are connected through 
vlinks, each supported by lightpaths on the 
optical layer. The customer connections can 
support services with different operational goals 
in terms of delay and throughput, so their 
capacity needs to be properly dimensioned. 
Instead of a fixed capacity dimensioning, 
however, such capacity can be dynamically 
adjusted to reduce overprovisioning. As a result 
of such dynamic capacity allocation, the vlink 
capacity can be also dynamically managed by 
establishing and releasing parallel lightpaths 
between the end packet nodes. 

The inner graphs in Fig. 1 show the evolution of 
the traffic and the capacity of each entity 
(customer connection and vlink). For the sake of 
simplicity, let us assume that customer 
connections can adjust their capacity with a 
given granularity, e.g., 10 Gb/s, whereas each 
parallel lightpath supporting the aggregated 
capacity of the vlink has a capacity of 100 Gb/s. 
Therefore, the capacity of the entities can be 
adjusted to closely follow the input traffic in such 
entity by just establishing thresholds, so when 
the traffic exceeds or goes below a given 
threshold, their capacity is automatically 
increased or reduced. However, such threshold-
based approach lacks the needed flexibility to 
introduce any different operational goal, in 
particular for customer connections, e.g., it is 
difficult to link maximum delay requirements with 
the required capacity of the connection. The 
inner graph for connection B-C in Fig. 1 shows 
the capacity adjustments performed assuming 
that the operational goal of the connection is to 
minimize the allocated capacity to reduce 
connectivity costs, by following as close as 
possible the input traffic while avoiding traffic 
loss. Note that this objective could be attained 
by means of ensuring the required threshold. 
However, in the case of connection A-D, the 
capacity was adjusted to ensure some 
maximum end-to-end delay; in spite of the 
subtle difference in the graphs in Fig. 1 
compared to connection B-C, the capacity of 
connection A-D is always large enough with 
respect the input traffic to ensure that the delay 
added by the time spent in the queues is under 
the given maximum. With this capacity 
requirements, vlinks can be easily managed, 
i.e., the capacity of vlink R1-R2 varies after 
adding or releasing one lightpath. 
To manage the capacity of the entities, in this 
paper we propose an IBN approach, where 
intents are based on RL. RL agents receive 
performance measurements from the network, 
as well as some reward that can be tuned as a 
function of the given operational goals, and are 
able to learn how to maximize such rewards in 
the long-term by generating the required actions 
to the environment. In our case, each intent 
consists of a RL agent managing the capacity of  
 



each entity and an 
environment module that 
abstracts the connectivity 
entity and computes rewards 
from the measurements that 
are used by the RL agent to 
learn (Fig. 2). Each customer 
connection intent collects the 
amount of input traffic that is 
injected to the connection, as 
well as some other data as 
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Fig. 1: A Multilayer scenario with two customer connections 

 

packet loss and delay and it determines the 
capacity of the connection that will be needed to 
meet the given operational goals for the next 
period (e.g., few minutes). A reward function 
uses the measured data and is programmable 
by tuning parameters that allow adjusting the 
behavior of the RL agent for e.g., keeping the 
total delay below a given maximum or to 
minimize the capacity; in both cases ensuring 
zero packet losses. In the case of the vlink 
intent, it receives as input the total capacity that 
every customer connection will require for the 
next period, as well as the aggregated amount 
of input traffic and the actual capacity of the 
vlink, and it is in charge of managing the vlink 
capacity to guarantee the aggregated capacity 
required by the customer connections by 
establishing/tearing down lightpaths. Note that 
while modifying the capacity of the customer 
connection entails programming some rules in 
the packet nodes and that capacity becomes 
immediately available, adding more capacity to 
the vlink entails establishing a new lightpath, 
which requires some time (e.g., one minute). 
Then, the vlink intents must make decisions with 
enough time to guarantee capacity availability. 
In the next section, we present a RL model 
based on Q-learning[3] that fits with the needs of 
both customer connection and vlink intents. 
RL approach based on Q-learning 
Q-learning is a model-free discrete RL technique 
that involves ns states and na actions, and it is 
able to learn the optimal policy represented by a 
Q-table of pairs <state, action>. After taking an 
action, the RL agent observes the new state and 
gained reward and updates the Q-table 
accordingly [3]. In our approach, the computation 
of state and reward, as well as the actions to be 
taken, are evaluated periodically (e.g., every 
minute) when a new set 𝒳(t) of measurements, 
statistics (i.e., max, min and avg of the last 
monitoring samples), and parameters are 
available for the connection or vlink (we call this 
episode). The state at time t has been defined to 
reflect how close the entity is to its limit, see in 
eq. (1), where y∈𝒳 is the selected measurement 
and z∈𝒳 is its current limit. Table 1 defines y 
and z for the three identified problems, labelled 
(a), (b), and (c). 
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Fig. 2: RL-based connection and vlink intents 

Table 1: State components for customer / vlink 
(a) Customer 

[Min cap] 
y(t):  max(input traffic) (b/s) 
z(t):  current capacity (b/s) 

(b) Customer 
[Assure delay] 

y(t):  max(delay) (s) 
z(t):  delay to be assured (s) 

(c) vlink 
[Assure cap] 

y(t):  max(input traf,𝜮(cust. cap.)(b/s) 
z(t):  current cap (b/s) 

Table 2: Reward function components 
fi(X(t)) φ(a) φ(b) φ(c) 

Underprovisioning: packet loss > 0 -100 -100 0 
Cap/delay limit violated: y(t) > z(t) 0 -100 -100 
Capacity overprov: z(t) - y(t) > k -10 -10 -10 
Fitted provisioning: z(t) - y(t) < k 10 0 10 
 

𝑠(𝑡) = min (⌈𝑛𝑠 · 𝑦(𝑡)/𝑧(𝑡)⌉, 𝑛𝑠)  (1) 

The reward function r is generalized as follows: 

𝑟(𝑡) = 𝜑0 +  𝜑𝑖 · 𝑓𝑖(𝒳(𝑡))

𝑖∈𝑚

 
 

(2) 

where the Boolean function fi(·) returns 1 if the 
condition is met and 0 otherwise, and the 
coefficient φi penalizes (<0) or promotes (>0) the 
result of the operation; besides, φ0 ensures a 
non-zero result. Error! Reference source not 
found. describes the components and 
coefficients for the three identified problems, 
where k refers to the size of a capacity unit and 
φ0=1. For capacity over-provisioning (third row), 
we consider that both x and z refer to traffic and 
capacity, respectively, including for problem (b). 
Finally, the action (number of k-size units to be 
added/subtracted) with highest reward with 
probability 1-ε (exploitation) or randomly with 
probability ε (exploration) is selected [3].  
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Fig. 3: RL convergence (a), capacity of customer connection for α=0.8 (b), and traffic loss in vlink (c)  

Table 3: Customer operational objectives performance 

Objective 
Capacity (Gb/s) Delay (ms) 
avg max avg Max 

Minimize 
Capacity 

8.1 11 
1.5 

(11%) 
566 

(27510%) 
Delay 
< 5 ms 

9.2 
(13.6%) 

13 
(18.2%) 

1.35 2.05 

Illustrative Numerical Results 
For numerical evaluation purposes, we have 
generated synthetic traffic flows for customer 
connection and vlinks according to the 
methodology and traffic models used in[4]-[5]. 
Using such generator, we emulated different 
number of traffic, generating more than 100,000 
different samples to be collected and processed. 
We implemented Q-learning in Python3 and 
initially configured ε=0.2 with a decay strategy. 
Fig. 3a shows the learning curve of the RL agent 
in terms of the average reward vs. the number 
of episodes for a customer connection. We 
observe that the RL agent quickly converges to 
the maximum reward, thus learning how to 
closely adjust the capacity to the actual traffic; 
similar learning curves for other customer and 
vlink traffic flows have been obtained. The inset 
in Fig. 3a shows a detail of such capacity 
adjustment (orange line) for an example of a 
customer connection flow (grey markers) with 
remarkably different daily traffic patterns. 
To illustrate the impact of the operational 
objective on the actions taken by the RL agent, 
we run the same examples of customer 
connection traffic flows according to the two 
different objectives (a) and (b) defined in the 
previous section, while ensuring zero losses; the 
obtained average and maximum capacity and 
delay are summarized in Table 3. We observe 
from the results that the RL agent meets the 
selected objective; it either allocates minimum 
capacity at the expenses of increasing delay or 
it adds more capacity to assure that the max 
delay is not exceeded. Note the high max delay 
experienced by the traffic when the capacity 
minimization objective was configured, in 
contrast to the limited increment in the capacity 
allocation when max delay was assured. 
Let us now compare the performance of the 
proposed RL agent against a reference 
threshold-based approach that adds/releases 
capacity to keep relative capacity utilization 
above parameter α ∈ [0,1]. Fig. 3b shows the 
required capacity for customer connection 

intents as a function of the magnitude of the 
input traffic. The threshold-based approach was 
configured with α=0.8 to ensure zero traffic loss. 
For the sake of fairness in the comparison, the 
operational objective has been configured to 
minimize the capacity, as the threshold-based 
approach cannot ensure maximum delay. In the 
results, we observe that the RL agent produces 
the best performance in the whole range of input 
traffic studied, significantly improving capacity 
utilization for low/moderated input traffic volume; 
the inner table shows savings as high as ~30% 
(2 Gb/s) per customer connection. 
Finally, the hierarchical coordination of customer 
connection and vlink intents (see in Fig. 2) has 
been evaluated in terms of the allocated vlink 
capacity. To this end, we generated several 
scenarios by aggregating customer connections 
in a vlink; scenarios go from smooth to sharp 
variation between consecutive traffic 
measurements. A baseline method based on the 
threshold-based approach with no coordination 
between intents was implemented. Fig. 3c 
shows the maximum traffic loss (computed as 
the maximum amount of traffic exceeding 
capacity) for different values of α. We observe 
that different scenarios result into different 
optimal configuration of α, i.e., the largest α that 
produces zero loss. It is clear, in view of Fig. 3c, 
that a procedure to determine the best α 
according to input traffic characteristics is 
needed to achieve a high performance using a 
threshold-based approach. In contrast, the 
proposed RL agent adapts to different traffic 
characteristics in an automatic and robust way. 
The inner table compares the average capacity 
allocated by the RL agent with that of the 
threshold-based with the optimal α for every 
scenario (both operating with 0 losses). We 
observe that the RL agent allocates similar 
capacity regardless of the scenario, whereas the 
threshold-based approach overprovisions 
capacity when traffic changes are sharper. 
Conclusions 
Coordinated operation of RL-based intents in 
multiple layers has been proposed. Remarkable 
performance under traffic variations and 
different operational objectives has been shown. 
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