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Abstract We present a reinforcement learning (RL) framework for maximizing the total capacity of a 51-
channel transmission system, which runs magnitudes faster than a genetic algorithm (GA) based 
optimization. The generalization capabilities and performance of the RL framework are compared to 
results obtained with a GA.  

Introduction 
Elastic Optical Networking (EON) provides a 
technology to manage the growing bandwidth 
demand by efficient use of spectral resources. 
Flexible devices, such as reconfigurable optical 
add/drop multiplexers (ROADM) and variable 
bandwidth transponders (BVT) are used for this 
purpose. A ROADM enables the steering of 
routes between different node directions whereas 
a BVT allows adapting the modulation format, 
coding scheme, forward error correction 
overhead and symbol rate according to the 
current link conditions. This enhanced 
operational flexibility often results in a significant 
increase in optimization complexity. Selecting the 
best set of parameters (modulation format, 
launch power, etc. …) from the huge parameter 
space is a difficult challenge, but simultaneously 
the key for achieving high capacities in EONs. In 
order to address this challenge, network planning 
requires an accurate estimation of the physical 
layer impairments (PLI), which include amplifier 
noise (amplified spontaneous emission, ASE) 
and non-linear interference (NLI)[1]. Currently, the 
most elaborated PLI model is based on Gaussian 
noise (GN) model versions[2],[3], which can be 
converted to fast performing closed form 
analytical expressions with reasonable 
approximation assumptions[4]. They combine 
adequate accuracy with relatively low 
computational complexity, to calculate a 
generalized OSNR (GOSNR) taking PLI and ASE 
into account. Based on this model, fixed-grid 
wavelength division multiplexing (WDM) 
networks with static traffic requests have already 
been optimized with the aim of maximizing the 
overall network throughput, by adapting the 
launch power and modulation format for each 
channel[5]. For EONs and dynamic traffic 
requests, an optimization of the link-level 
resource allocation was presented in[1] and 
extended to multi-point networks[6], by using a 
combination of the GN model with a transmission 

reach method[6]. 
Beyond the conventional algorithms, heuristic 
and machine learning algorithms are being 
investigated as promising approaches for 
resource allocation optimization. In[7] an adaptive 
GA for solving dynamic routing, modulation and 
spectrum assignment (RMSA) for EONs is 
proposed, which is designed for multi-objective 
optimization. Another approach is presented in[8], 
in which a RL algorithm is applied.  
 In this paper, we present a RL framework to 
optimize the process of setting up controllable 
BVT parameters with the aim of maximizing the 
total capacity of a point-to-point link. During the 
training process, the RL agent interacts with the 
GN model to learn the complex nonlinear 
dependencies of the transmission system. 
Subsequently, it can apply the acquired 
knowledge to adjust the BVT parameters 
depending on the current conditions in a short 
time (i.e. in the order of seconds). Results from a 
GA[9] are taken to benchmark the obtained 
results.  
Reinforcement Learning 
In RL, an agent learns by repeatedly interacting 
with an environment over a number of discrete 
time steps, . Based on the observation of the 
environment, the agent selects an action (from a 
range of possible actions). A reward is then 
attributed to the agent based on the outcome of 
the performed action[10]. The resulting behaviour 
is called the policy of the agent, which can be 
understood as a mapping between an 
observation state of the environment and an 
action to perform. The goal of RL is then to 
develop a generalized policy that maximizes the 
long-term expected reward.  
 The optimization problem under study can be 
modeled as a Markov decision process (MDP), 
which makes RL algorithms suitable for the 
task[10]. A MDP is defined as a tuple  
where  is the set of possible states of the 



environment,  is the set of actions the agent can 
perfom,  is the reward function 
for the agent which depends on the current state, 
the action performed and the next state, and 

 is the transition function, 
where  is the 
probability distribution of the next state  given 
the current state  and action  for a time step 
. A policy  specifies which action should be 

executed when presented with a certain state. 
The goal of training an agent is to find an optimal 
policy  that maximizes the long term 
reward. The optimal policy can be found as[11]: 

        (1) 

where the expectation,  is taken over 
,  is a trajectory defined by a 

sequence of states and actions, which define a 
single episode of length . In order to find  a 
balance between exploitation and exploration is 
required. By exploring the state space the agent 
can gather useful experience about possible 
states and rewards, whereas by exploiting 
acquired knowledge the agent will select the best 
action given its current experience. A common 
method to balance exploration/exploitation is the 
so-called -greedy approach. Under this method 
the agent selects a random action with probability 
, otherwise the action is selected using the 

current policy. During the training phase  is often 
decreased continously.  
Simulation Setup 
The simulation setup (see Fig. 1) consists of the 
RL agent and the optical transmission system 
which defines the environment. A set of  
coherent channels, , are to be 
transmitted over a WDM link using a fixed 
channel spacing. It is assumed that the 
transmission is done over spans. Each 
channel  is defined by a central frequency , 
power , bit rate  and modulation format .  

The PLIs are then estimated using the GN 
model[2],[3], which provides the  and the 

 margin for each channel by:  

      (2) 

The GN model is implemented on the assumption 
that all spans and amplifiers are identical. 
Furthermore,  at each amplifier is the same, 
thus no amplifier gain or fiber attenuation tilt or 
gain ripple are considered.  
 The agent's goal is to maximize the overall bit 
rate while maintaining a predefined minimum . 
To solve the problem by means of RL it is 
required to define the environmental properties in 
states, actions and rewards (see Fig. 1). 

 State:  is a vector of size , 
containing the information about the number of 
spans of the system, and the bitrate, power, and 
margins of each channel. 
 Action: the agent is able to set a new bitrate 
and power for a selected number of channels. 
The ones to be changed are addressed with a 
channel mask  of length . Note that 

 indicates that  will be affected. 
Additionally, the agent is able to signal that no 
further changes to the current parameters are 
necessary by setting a done flag. Summarizing, 
the agent sets a bitrate and power for the masked 
subset of channels. Thus, the action space 
representation  is a vector of size . 

Reward: after each action the agent receives 
a small negative reward of  to 
encourage the agent to find the best possible 
solution with the smallest possible number of 
actions. Additionally, the number of steps per 
episode  is limited by . At the end 
of each episode, the additional reward is 
calculated as:  

            (3) 

using the reward per channel 

         (4) 

 

 

where  is the minimum required 
margin and the maximum margin, which is 
set heuristically.  

Since the optimal parameters of the 
transmission system and the maximum 
aggregate bit rate are unknown during training, 
the maximum per channel bit rate 

 is set to the highest possible throughput 
of the transponders used in the simulation. To 
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Fig. 1: Simulation setup. 



evaluate the performance of this approach the 
simulation setup is implemented based on the 
available advantage actor critc (A2C) algorithm[12] 
from the stable baseline library[13]. The A2C 
algorithm utilizes two neural networks to 
parameterize the state-value function and the 
stochastic policy of the agent. The agent is 
trained to maximize the overall bit rate for  
channels of the transmission system as shown in 
Fig. 1, using  spans of 8 km LEAF. It is 
implemented using feed-forward neural networks 
(FNNs) with  and  neurons in the hidden 
layers, respectively. At the beginning of each 
episode the state of the environment is initialized 
with  and  for each channel and 
the number of spans is uniformly distributed in the 
range of 4 to 23. The number of episodes  is 
set to . Results are shown for a range of 

 testing solutions. For each solution the 
agent starts at the initialized state as in training, 
but with a fixed number of spans  and tries to 
maximizes the bitrate. If one margin of the 
channels is below , the solution is considered 
as unfeasible. The trained agent is compared to 
solutions produced by optimizing the system 
parameters with a GA, which has been trained for 
500 generations and a population size of 64. 
Results and Discussion 
As shown in Fig. 2 the overall achieved bitrate of 
the RL agent can compete and sometimes 
surpass the solutions produced by the GA, even 
though the variance of the overall bitrate is 

significantly higher. The influence of optimizing 
the hyperparameters of the FNNs and increasing 

 could be investigated to adress this issue.  
It is noticeable, that the computation time differs 
significantly between these two approaches. The 
GA produces a single solution within 5-10 min, 
whereas a RL agent takes 1s on average, after 
12h of initial training on our state-of-the-art PC.  

Another important advantage of the RL is its 
generalization capability. An RL agent is able to 
produce solutions for scenarios/states for which 
it has not been trained explicity. This principle is 
shown in Fig. 3, where four different RL agents 
are compared, and each agent has been trained 
on a subset of span counts. The comparison of 
all trained agents shows that there is no 
significant difference or decrease in the predicted 
maximum possible throughput, but the per-
centage of invalid solutions varies with each 
agent. Furthermore, it can be seen that agents 
trained for less span counts (every 4th, every 8th) 
tend to perform better than the agent trained for 
each span, especially for low span counts. The 
agents choose riskier solutions, which lead to 
higher bitrates, but decreases the percentage of 
valid runs. Less span counts result in a smaller 
and therefore better trained state space of the 
agent. And the generalizability of RL then leads 
to the fact that good results can be achieved for 
other spans counts as well. 
Conclusion 
We investigated a RL algorithm to maximize the 
overall bitrate of a transmission system and 
compared it to a GA. The predicted optical 
performance of the algorithms is very similar, 
whereby the higher variance of the RL algorithm 
might be reduced by hyper parameter 
optimization. However, RL convinces by its ability 
to generalize, which means that almost identical 
results can be achieved with less training. Future 
work targets are to add further parameters to the 
state space, such as span length or fiber type, as 
well as the optimization of the neural networks. 

 
Fig. 3: Overall bitrate and percentage of valid results achieved by the agent in 1000 solutions. The agents were 
trained for each, every second, fourth and eighth span and tested for every span in the range of 6 and 23. 

 
Fig. 2: Overall bitrate achieved by the agent in 1000 
solutions compared to 53 solutions found with a GA 
for span counts .  
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