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Abstract This paper proposes a deep reinforcement learning based framework for core, mode and 
spectrum resource sequential scheduling (CMS3), DeepCMS3. Compared to previous CMS3 algorithm, 
DeepCMS3 can achieve higher resource utilization and lower blocking rate. 

Introduction 
Resource optimization with objectives of higher 
resource utilization and lower service blocking 
rate is an essential part in reducing the 
operating expense (OPEX) over optical 
transport network (OTN). Classic resource 
optimization in a wavelength division 
multiplexing (WDM) based OTN is described as 
the routing, modulation and spectrum 
assignment (RMSA) problem. In RMSA, 
resources with only one dimension (i.e., the 
spectrum) need to be considered. However, the 
fast growth of OTN traffic has led to intensive 
research of space-division multiplexing (SDM), 
including mode-division multiplexing (MDM), a 
technology that can provide ultra-high bandwidth. 
With SDM, through the core, mode and 
spectrum availability it is possible to increase 
the capacity of OTNs in the near future. As a 
result, the problem’s dimensions expand to 
three, and such three-dimensional allocation 
problem has been proved to be NP-hard[1].  

The main challenge in getting an optimal 
solution for the three-dimensional resource 
scheduling is the huge allocation decision space. 
In our previous work[2] we proposed an algorithm 
of core, mode and spectrum sequential 
scheduling (CMS3), and the results are sub-
optimal due to the heuristic strategy. Recently, 
deep reinforcement learning (DRL) has shown 
better performance in network resource 
scheduling. DRL uses deep neural networks 
(DNNs) to parameterize the allocation decision 
space, which makes it possible to fast converge 
to a near-optimal solution. Chen et al.[3] 
proposed DRL-based DeepRSMA over the 
elastic optical networks (EONs). Suárez-Varela 
et al.[4] then gave a DRL-based routing solution 
over the OTN. 

Motivated by the related works, in this paper, 
we propose a DRL framework for core, mode 
and spectrum sequential scheduling, DeepCMS3 
for short. The learning results verify that 
DeepCMS3 outperforms CMS3 in the resource 

utilization and the blocking rate. 

 
Fig. 1: Problem descriptions of the DeepCMS3. 

Modeling of CMS3 and DeepCMS3 
As shown in Fig. 1(a), we explain DeepCMS3 
problem based on a coupled 7-core fiber, and 
network topology is depicted as an example. Fig. 
1(b) and Fig. 1(c) are request matrices in time 
sequential order. Fig. 1(d) to Fig. 1(g) are parts 
of the specific allocation of time step 𝑡! and 𝑡!"#, 
where the horizontal axis is the core ID, and the 
vertical axis is the spectral slot. In each spectral 
slot, there are three coupled mode groups, in 
which 𝛼, 𝛽 and 𝛾 represent the mode group of 
LP01, (LP11a, LP11b) and (LP21a, LP21b) 
respectively. Small rectangles with different 
colors and different patterns denote the 
allocations for different requests with different 
modulation formats (MF).  

The crosstalk (XT) constrains are also 
considered in DeepCMS3 problem. The average 
XT is related to the core, mode and spectrum. A 
strongly coupled mode group with multi-input 
multi-output (MIMO) technology can cancel the 
mode related XT. Thus, the considered XT for 
DeepCMS3 is wavelength-dependent and can 
be calculated according to F. Ye, et al.[5] In 
addition, we should consider the XT threshold 
for different MFs in line with M. Klinkowski, et 
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al.[6]. For these reasons, in Fig. 1(d), at time 𝑡!, 
because the XT of AB(I) link is higher than the 
XT threshold for 8-QAM, the green and red 
requests should be modulated as QPSK, and 
the blue request can be transmitted as 8-QAM in 
BC(III) link due to acceptable XT in Fig. 1(e). In 
Fig. 1(f) and Fig. 1(g), at time 𝑡!"# , since the 
wavelength-dependent XT is higher due to the 
longer distance (i.e., the path is AB+BC), the 
green request can only be allocated at the same 
spectrum slots in non-adjacent cores or the 
different spectrum slots in adjacent cores, 
because the XT from the allocations of the same 
spectrum slots in the adjacent cores is not 
acceptable, even if the MF is at the lowest level 
(i.e., QPSK in this paper). 

In light of these constraints, when doing the 
resource allocations, the scheduling order of the 
requests becomes essential[7]. Because a 
former allocation is expected not to impact the 
XT satisfaction of a subsequential allocation. For 
example, in Fig. 1(f) if the AB request is first to 
be scheduled, the AB request may occupy all 
the spectrum slots in core 1. Then the AC 
request has not enough spectrum slots in two 
non-adjacent cores (i.e., core 1 and core 4). 
Although the AC request can be allocated in all 
spectrum slots in core 4, all the spectrum slots 
within cores that are adjacent to core 4 are 
unavailable. As a result, the AC request is 
preferred to be scheduled last. Given an optimal 
series of scheduling orders, even if the current 
request occupies the resources preemptively, 
the following request can still get enough 
available resources. This effect makes the 
specific core, specific mode and specific 
spectrum no longer important, and we can do 
the allocations preemptively. In addition, the 
accurate allocation of core, mode and spectrum 
leads to extremely huge action space of DRL, 
which may have a negative impact on the 
efficiency. In a heuristic method like previous 
CMS3, the optimal series of scheduling orders is 
hard to be planned. Therefore, in DeepCMS3, 
DRL is expected to learn the proper scheduling 
orders, and DeepCMS3 is designed as follows. 

Objective. To maximize the resource 
utilization and at the same time minimize the 
blocking rate are the objectives of DeepCMS3.  

State space. The state of the framework 
includes the traffic request matrix and the 
allocation of core, mode and spectrum at current 
time. We can use a 𝑁$ −𝑁 vector to represent 
the traffic request matrix. The value of the 𝑛-th 
(where 𝑛 = (𝑖 − 1) × 𝑁 + 𝑗, 𝑖 ≠ 𝑗) element in this 
vector denotes a 𝑥 Gbps requests from node 𝑖 to 
node 𝑗 . Assuming a fiber link has 𝐶  cores, 𝑀 
mode groups and 𝑆 spectrum slots, the currently 

allocated resources can be represented as a 
𝐸 × (𝐶 ×𝑀 × 𝑆) matrix, where 𝐸  is the number 
of the fiber links over the OTN.  

Action space. According to the earlier 
analysis, and following the trick from Mao et al.[7], 
the action can be given as 𝑎% = 𝑜 , where	𝑜  is 
from {1,2, … ,𝑁$ −𝑁}  denotes the scheduling 
order of the 𝑛-th request. After the scheduling 
orders are learned, we can use the same 
method with CMS3[2] but different scheduling 
orders to calculate resource utilization and 
blocking rate. 

Rewards. The reward 𝑟& is set as two parts, 
𝑟& = 𝑈& − 𝑅& , where 𝑈&  and are the resource 
utilization and blocking rate of timestep 
𝑡 respectively. Because we expect a lower 
blocking rate, there is a minus in front of 𝑅&. 

The framework of DeepCMS3 is shown in the 
Fig. 2. The sequential requests are firstly 
collected by the Network Controller (process 1). 
The Network Controller sends topology, 
resource capacity and sequential traffic requests 
into the OTN Simulator (process 2). The OTN 
Simulator is working as the environment of the 
DRL Agent. The OTN Simulator retrieves a 
series of learned actions from DRL Agent and 
calculate the rewards for the DRL Agent. The 
rewards would help the DRL Agent to update 
better actions. After training, the DNNs in the 
DRL Agent are restored as the Policy Generator 
to be reused (process 5). The Network 
Controller then feeds the residual resources and 
traffic requests into the Policy Generator 
(process 4), the expected allocation policy is 
obtained then by the Network Controller 
(process 5), and the resource provisions are 
done accordingly (process 6). 

 
Fig. 2: DeepCMS3 framework. 

Learning and Results 
We evaluate the performance of DeepCMS3 
over a Japanese transport network with 12 
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nodes (i.e., JPN12)[8]. The fibers in JPN12 are 
assumed to be step-index multicore fibers (SI-
MCFs). The core radius 𝑎# = 4.5µm , and the 
relative refractive-index difference is ∆#= 0.35%. 
In each fiber link, 𝐶 = 7 , 𝑀 = 3  and 𝑆 = 40 . 
Each spectrum slot is 25GHz. 

The traffic load is set according to the total 
capacity of resources over JPN12. The traffic 
load in all the learning processes is set as 0.6. 
The traffic request between each node pair is 
random, but the total bitrate of all the requests is 
determined by the load. The duration of the 
request is also random. The traffic matrix will be 
updated at each timestep. The total timestep is 
100, and the training epoch is 500. DDPG[9] is 
used in the DRL Agent. As for the actor 
networks[9], the 3-layer CNN is used to reduce 
the dimension of the state representations into a 
vector. Then the vector is input into multiple full 
connected layers, and the action output is a 132 
(i.e., 𝑁$ −𝑁,𝑁 = 12 ) vector. As for the critic 
networks[9], the vector of the state 
representations from the 3-layer CNN and the 
action vector are combined into a new longer 
vector as the input of the multiple full connected 
layers. The multiple full connected layers are the 
same in actor networks and critic networks in a 
learning process. There are two types of the 
multiple full connected layers can be chosen, 
one is with 6 hidden layers and the hidden size 
is 264 (Type 1), the other is with 3 hidden layers 
and the hidden size is 132 (Type 2). 

The learning rewards of every 10 epochs are 
drawn in Fig. 3. It can be seen that DRL can 
converge after about 100 epochs. The neural 
network learning performance of Type 1 and 
Type 2 are also compared. The Type 2 
outperforms Type 1 in getting higher rewards, 
but the difference is not significant.  

Then, the average resource utilizations and 
average blocking rates of DeepCMS3, CMS3 and 
spectrum first (SF)[2] are compared in Fig. 4(a) 
and Fig. 4(b) respectively. The blue lines and 
the black dotted lines record the resource 
utilization and blocking rate of every 10 epochs 
under DeepCMS3 with Type 1 and Type 2 
respectively. The red lines and the red dotted 
lines are results from CMS3 and SF respectively 
when the network load is also 0.6. SF strategy is 
that requests are allocated with spectrum 
resources first. It can be seen that DeepCMS3 
outperforms CMS3 and SF in higher resource 
utilization and lower blocking rate due to the 
optimal scheduling orders.  

Conclusions 
We proposed DeepCMS3, a DRL-based 
framework for the core, mode and spectrum 
sequential scheduling over the OTN. In 

DeepCMS3 framework, CNN+DNN based 
DDPG has been proposed to reduce the 
dimensions of the state representations. The 
higher performance of DeepCMS3 has been 
verified comparing to previous CMS3 and SF 
algorithms. 

 
Fig. 3: Learning reward every 10 epochs. 

 
(a)                                           (b) 

Fig. 4: The resource utilization and the blocking rate  
(every 10 epochs for DeepCMS3) 
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