
DeepCMS3: A Deep Reinforcement Learning Framework
for Core, Mode and Spectrum Sequential Scheduling

over Optical Transport Network
Cen WANG(1), Noboru Yoshikane(1), Filippos Balasis(1), Takehiro Tsuritani(1)

(1) Photonic Transport Network Laboratory, KDDI Research Inc, ce-wang@kddi-research.jp

Abstract This paper proposes a deep reinforcement learning based framework for core, mode and
spectrum resource sequential scheduling (CMS3), DeepCMS3. Compared to previous CMS3 algorithm,
DeepCMS3 can achieve higher resource utilization and lower blocking rate.

Introduction
Resource optimization with objectives of higher
resource utilization and lower service blocking
rate is an essential part in reducing the
operating expense (OPEX) over optical
transport network (OTN). Classic resource
optimization in a wavelength division
multiplexing (WDM) based OTN is described as
the routing, modulation and spectrum
assignment (RMSA) problem. In RMSA,
resources with only one dimension (i.e., the
spectrum) need to be considered. However, the
fast growth of OTN traffic has led to intensive
research of space-division multiplexing (SDM),
including mode-division multiplexing (MDM), a
technology that can provide ultra-high bandwidth.
With SDM, through the core, mode and
spectrum availability it is possible to increase
the capacity of OTNs in the near future. As a
result, the problem’s dimensions expand to
three, and such three-dimensional allocation
problem has been proved to be NP-hard[1].

The main challenge in getting an optimal
solution for the three-dimensional resource
scheduling is the huge allocation decision space.
In our previous work[2] we proposed an algorithm
of core, mode and spectrum sequential
scheduling (CMS3), and the results are sub-
optimal due to the heuristic strategy. Recently,
deep reinforcement learning (DRL) has shown
better performance in network resource
scheduling. DRL uses deep neural networks
(DNNs) to parameterize the allocation decision
space, which makes it possible to fast converge
to a near-optimal solution. Chen et al.[3]
proposed DRL-based DeepRSMA over the
elastic optical networks (EONs). Suárez-Varela
et al.[4] then gave a DRL-based routing solution
over the OTN.

Motivated by the related works, in this paper,
we propose a DRL framework for core, mode
and spectrum sequential scheduling, DeepCMS3
for short. The learning results verify that
DeepCMS3 outperforms CMS3 in the resource

utilization and the blocking rate.

Fig. 1: Problem descriptions of the DeepCMS3.

Modeling of CMS3 and DeepCMS3
As shown in Fig. 1(a), we explain DeepCMS3
problem based on a coupled 7-core fiber, and
network topology is depicted as an example. Fig.
1(b) and Fig. 1(c) are request matrices in time
sequential order. Fig. 1(d) to Fig. 1(g) are parts
of the specific allocation of time step 𝑡! and 𝑡!"#,
where the horizontal axis is the core ID, and the
vertical axis is the spectral slot. In each spectral
slot, there are three coupled mode groups, in
which 𝛼, 𝛽 and 𝛾 represent the mode group of
LP01, (LP11a, LP11b) and (LP21a, LP21b)
respectively. Small rectangles with different
colors and different patterns denote the
allocations for different requests with different
modulation formats (MF).

The crosstalk (XT) constrains are also
considered in DeepCMS3 problem. The average
XT is related to the core, mode and spectrum. A
strongly coupled mode group with multi-input
multi-output (MIMO) technology can cancel the
mode related XT. Thus, the considered XT for
DeepCMS3 is wavelength-dependent and can
be calculated according to F. Ye, et al.[5] In
addition, we should consider the XT threshold
for different MFs in line with M. Klinkowski, et

A B C

D

I

II

Spectrum

(I)

(a)

(d)

(b) (c)

Spectrum

(III)

Spectrum

(I)

Spectrum

(III)

… …

… …

(e)
Core Core

CoreCore(f) (g)

QPSK 8-QAM
! " #

1 2 4

!$!$%&"'

"'%(

III
A
B
C
D

A B C D …

…

A
B
C
D
…

A B C D …

… …

…

1 2 4

1 2 4 1 2 4

…

0 40 20 20 ⋯
0 90 60 ⋯

0 30 ⋯
0 ⋯

⋱

0 60 40 20 ⋯
0 90 20 ⋯

0 30 ⋯
0 ⋯

⋱
6 1

2
34

5 7

al.[6]. For these reasons, in Fig. 1(d), at time 𝑡!,
because the XT of AB(I) link is higher than the
XT threshold for 8-QAM, the green and red
requests should be modulated as QPSK, and
the blue request can be transmitted as 8-QAM in
BC(III) link due to acceptable XT in Fig. 1(e). In
Fig. 1(f) and Fig. 1(g), at time 𝑡!"# , since the
wavelength-dependent XT is higher due to the
longer distance (i.e., the path is AB+BC), the
green request can only be allocated at the same
spectrum slots in non-adjacent cores or the
different spectrum slots in adjacent cores,
because the XT from the allocations of the same
spectrum slots in the adjacent cores is not
acceptable, even if the MF is at the lowest level
(i.e., QPSK in this paper).

In light of these constraints, when doing the
resource allocations, the scheduling order of the
requests becomes essential[7]. Because a
former allocation is expected not to impact the
XT satisfaction of a subsequential allocation. For
example, in Fig. 1(f) if the AB request is first to
be scheduled, the AB request may occupy all
the spectrum slots in core 1. Then the AC
request has not enough spectrum slots in two
non-adjacent cores (i.e., core 1 and core 4).
Although the AC request can be allocated in all
spectrum slots in core 4, all the spectrum slots
within cores that are adjacent to core 4 are
unavailable. As a result, the AC request is
preferred to be scheduled last. Given an optimal
series of scheduling orders, even if the current
request occupies the resources preemptively,
the following request can still get enough
available resources. This effect makes the
specific core, specific mode and specific
spectrum no longer important, and we can do
the allocations preemptively. In addition, the
accurate allocation of core, mode and spectrum
leads to extremely huge action space of DRL,
which may have a negative impact on the
efficiency. In a heuristic method like previous
CMS3, the optimal series of scheduling orders is
hard to be planned. Therefore, in DeepCMS3,
DRL is expected to learn the proper scheduling
orders, and DeepCMS3 is designed as follows.

Objective. To maximize the resource
utilization and at the same time minimize the
blocking rate are the objectives of DeepCMS3.

State space. The state of the framework
includes the traffic request matrix and the
allocation of core, mode and spectrum at current
time. We can use a 𝑁$ −𝑁 vector to represent
the traffic request matrix. The value of the 𝑛-th
(where 𝑛 = (𝑖 − 1) × 𝑁 + 𝑗, 𝑖 ≠ 𝑗) element in this
vector denotes a 𝑥 Gbps requests from node 𝑖 to
node 𝑗 . Assuming a fiber link has 𝐶 cores, 𝑀
mode groups and 𝑆 spectrum slots, the currently

allocated resources can be represented as a
𝐸 × (𝐶 ×𝑀 × 𝑆) matrix, where 𝐸 is the number
of the fiber links over the OTN.

Action space. According to the earlier
analysis, and following the trick from Mao et al.[7],
the action can be given as 𝑎% = 𝑜 , where	𝑜 is
from {1,2, … ,𝑁$ −𝑁} denotes the scheduling
order of the 𝑛-th request. After the scheduling
orders are learned, we can use the same
method with CMS3[2] but different scheduling
orders to calculate resource utilization and
blocking rate.

Rewards. The reward 𝑟& is set as two parts,
𝑟& = 𝑈& − 𝑅& , where 𝑈& and are the resource
utilization and blocking rate of timestep
𝑡 respectively. Because we expect a lower
blocking rate, there is a minus in front of 𝑅&.

The framework of DeepCMS3 is shown in the
Fig. 2. The sequential requests are firstly
collected by the Network Controller (process 1).
The Network Controller sends topology,
resource capacity and sequential traffic requests
into the OTN Simulator (process 2). The OTN
Simulator is working as the environment of the
DRL Agent. The OTN Simulator retrieves a
series of learned actions from DRL Agent and
calculate the rewards for the DRL Agent. The
rewards would help the DRL Agent to update
better actions. After training, the DNNs in the
DRL Agent are restored as the Policy Generator
to be reused (process 5). The Network
Controller then feeds the residual resources and
traffic requests into the Policy Generator
(process 4), the expected allocation policy is
obtained then by the Network Controller
(process 5), and the resource provisions are
done accordingly (process 6).

Fig. 2: DeepCMS3 framework.

Learning and Results
We evaluate the performance of DeepCMS3
over a Japanese transport network with 12

A B

D

I

II

III

Policy Generator
(trained DNNs)

OTN Simulator
(with core, mode and
spectrum resources

DRL
Agent

Network Controller

0 "# "$ "% ⋯
0 #$ #% ⋯

0 $% ⋯
0 ⋯

⋱

… …

Control Agent A Control Agent B Control Agent C … …

C

Topology&
Resource
capacity&
Sequential
traffic
requests,
… …

Policy (a series of actions)

Rewards

Network
Time sequential
traffic requests

Residual resources &
Traffic requests (with
or w/o predictions),
… …

Allocation
Policy

Trained
DNNs

×4

❸

❷ ❹

❶

❺

Tim
e ❻

nodes (i.e., JPN12)[8]. The fibers in JPN12 are
assumed to be step-index multicore fibers (SI-
MCFs). The core radius 𝑎# = 4.5µm , and the
relative refractive-index difference is ∆#= 0.35%.
In each fiber link, 𝐶 = 7 , 𝑀 = 3 and 𝑆 = 40 .
Each spectrum slot is 25GHz.

The traffic load is set according to the total
capacity of resources over JPN12. The traffic
load in all the learning processes is set as 0.6.
The traffic request between each node pair is
random, but the total bitrate of all the requests is
determined by the load. The duration of the
request is also random. The traffic matrix will be
updated at each timestep. The total timestep is
100, and the training epoch is 500. DDPG[9] is
used in the DRL Agent. As for the actor
networks[9], the 3-layer CNN is used to reduce
the dimension of the state representations into a
vector. Then the vector is input into multiple full
connected layers, and the action output is a 132
(i.e., 𝑁$ −𝑁,𝑁 = 12) vector. As for the critic
networks[9], the vector of the state
representations from the 3-layer CNN and the
action vector are combined into a new longer
vector as the input of the multiple full connected
layers. The multiple full connected layers are the
same in actor networks and critic networks in a
learning process. There are two types of the
multiple full connected layers can be chosen,
one is with 6 hidden layers and the hidden size
is 264 (Type 1), the other is with 3 hidden layers
and the hidden size is 132 (Type 2).

The learning rewards of every 10 epochs are
drawn in Fig. 3. It can be seen that DRL can
converge after about 100 epochs. The neural
network learning performance of Type 1 and
Type 2 are also compared. The Type 2
outperforms Type 1 in getting higher rewards,
but the difference is not significant.

Then, the average resource utilizations and
average blocking rates of DeepCMS3, CMS3 and
spectrum first (SF)[2] are compared in Fig. 4(a)
and Fig. 4(b) respectively. The blue lines and
the black dotted lines record the resource
utilization and blocking rate of every 10 epochs
under DeepCMS3 with Type 1 and Type 2
respectively. The red lines and the red dotted
lines are results from CMS3 and SF respectively
when the network load is also 0.6. SF strategy is
that requests are allocated with spectrum
resources first. It can be seen that DeepCMS3
outperforms CMS3 and SF in higher resource
utilization and lower blocking rate due to the
optimal scheduling orders.

Conclusions
We proposed DeepCMS3, a DRL-based
framework for the core, mode and spectrum
sequential scheduling over the OTN. In

DeepCMS3 framework, CNN+DNN based
DDPG has been proposed to reduce the
dimensions of the state representations. The
higher performance of DeepCMS3 has been
verified comparing to previous CMS3 and SF
algorithms.

Fig. 3: Learning reward every 10 epochs.

(a) (b)

Fig. 4: The resource utilization and the blocking rate
(every 10 epochs for DeepCMS3)

References
[1] H. Hu, et al., “Solving a New 3D Bin Packing Problem

with Deep Reinforcement Learning Method,”
arXiv:1708.05930, 2017.

[2] C. WANG, et al., “Guaranteed-QoT, High-Availability
and High- Utilization Core, Mode and Spectrum
Sequential Scheduling in Optical Transport Network,”
2020 25th OptoElectronics and Communications
Conference (OECC), Taipei, 2020.

[3] X. Chen, et al., "DeepRMSA: A Deep Reinforcement
Learning Framework for Routing, Modulation and
Spectrum Assignment in Elastic Optical Networks," in
Journal of Lightwave Technology, vol. 37, no. 16, pp.
4155-4163, 15 Aug.15, 2019.

[4] J. Suárez-Varela et al., "Routing Based on Deep
Reinforcement Learning in Optical Transport
Networks," 2019 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA,
USA, 2019, pp. 1-3.

[5] F. Ye et al., "Wavelength-Dependence of Inter-Core
Crosstalk in Homogeneous Multi-Core Fibers," in
IEEE PTL, vol. 28, no. 1, pp. 27-30, 2016.

[6] M. Klinkowski, et al., "A Study on the Impact of Inter-
Core Crosstalk on SDM Network Performance," 2018
ICNC, Maui, HI, 2018, pp. 404-40.

[7] Hongzi Mao, et al., “Resource Management with
Deep Reinforcement Learning,” in Proceedings of
HotNets '16, New York, USA, 2016, pp.50–56.

Type 1: CNN + DNN (6 hidden layer, 264 hidden size)
Type 2: CNN + DNN (3 hidden layer, 132 hidden size)

R
ew

ar
d

40

60

80

Training Epoch
0 100 200 300 400 500

CMS3

SF
DeepCMS3 Type 1
DeepCMS3 Type 2

R
es

ou
rc

e
U

til
iz

at
io

n

0.5

0.6

0.7

0.8

0.9

Training Epoch
0 200 400

CMS3

SF
DeepCMS3 Type 1
DeepCMS3 Type 2

Bl
oc

ki
ng

 R
at

e

0.1

0.2

0.3

Training Epoch
0 200 400

[8] S. Arakawa, et al., "Topological Characteristic of
Japan Photonic Network Model," in IEICE Technical
Report, PN2013-2, Jun. 2013.

[9] Timothy P. Lillicrap, et al., “Continuous Control with
Deep Reinforcement Learning,” arXiv:1509.02971,
2016.

